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A B S T R A C T   

Background: A person consults a doctor when he or she is suspicious of their cognitive abilities. Finding patients 
who can be converted into Alzheimer’s in the future is a difficult task for doctors. A person’s dementia can be 
converted into several types of dementia conditions. Among all dementia, Alzheimer’s is considered to be the 
most dangerous as its rapid progression can even lead to the death of an individual. Consequently, early 
detection of Alzheimer’s would help in better planning for the treatment of the disease. Thereby, it is possible to 
reduce the progression of the disease. The application of Machine Learning algorithms is useful in accurately 
identifying Alzheimer’s patients. Advanced Machine Learning algorithms are capable of increasing the perfor-
mance classification of future AD patients. Hence, this study is made on a number of previous works from 2016 
onwards on Alzheimer’s detection. The aspects such as the country of the participants, modalities of data used 
and the features involved, feature extraction methods used, how many follow-up data were used, the period of 
Mild Cognitive Impairment to Alzheimer’s Disease converters predicted, and the various machine learning 
models used in the previous studies of Alzheimer’s detection are reviewed in this study. This review helps a new 
researcher to know the features and Machine Learning models used in the previous studies for the early detection 
of Alzheimer’s. Thus, this study also helps a researcher to critically evaluate the literature on Alzheimer’s disease 
detection very easily as the paper is organized according to the various steps of the Machine Learning process for 
Alzheimer’s detection in a simplified manner.   

1. Introduction 

Alzheimer’s is one of the deadly dementia as the rate of progression 
of the disease is rapid. It can even lead to the death of an individual. 
Alzheimer’s can destroy the cognitive abilities of an individual in a 
dangerous manner [1]. Usually, a person consults when he or she sus-
pects his or her cognitive abilities. The cognitive impairment of a patient 
can lead to several types of dementia. Among various types of dementia, 
it is difficult for a doctor to find out the patients who will have Alz-
heimer’s in future [2]. 

Finding the crucial bio-markers for determining Alzheimer’s and 
other type of dementia are a crucial investigating area among the re-
searchers [3–5]. The study conducted by the researchers in Refs. [3–5] 
experimented on a rat model for the detection of Alzheimer’s patients. 
The main idea behind the experimentation on rat models is to observe 
how effective the drug is in reducing the progression of Alzheimer’s 
disease. Hence, much of the latest research mainly revolves around the 

experimentation of Alzheimer’s symptoms and medications on rats 
[3–8]. All of these studies focus on observing the risk factors of AD 
among the rats which the doctors believe could be replicated among 
human beings also. Hence, the physicians are using the neuroimage 
changes that were observed among the rats for conducting a study on the 
human body also [3–8]. 

Finding Alzheimer’s patients at the baseline or screening visit itself 
helps doctors in making better health related decisions. Thus, the doctor 
can plan better medication strategies that reduce the progression of the 
disease. Further, early detection of Alzheimer’s helps in better health 
related outcomes of the patient [9]. The treatment strategies are also 
more effective during the early stages of the progression of the disease. 
Likewise, the effect of drugs is also more effective during the early stages 
of the disease [9]. 

It is also a challenging task to find out patients who will convert to 
Alzheimer’s in future. This is because the exact parameters responsible 
for conversion of Mild Cognitive Impairment (MCI) to Alzheimer’s 
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Disease (AD) still has not been found out. Generally, the doctors take this 
decision by analysing data such as Magnetic Resonance Imaging (MRI), 
Positron Emission Tomography (PET) and Neuro-psychological- 
assessments data. But, this is challenging to the doctors as the charac-
teristics of MCI to AD converters is very complex and hard to trace. In 
such a scenario, a predictive Machine Learning (ML) model assists in 
good decision making process [2,10]. Researchers have focused mostly 
on longitudinal (visit) data of patients for early prediction. Longitudinal 
data collected over various follow up periods say first, second, third 
visits and so on contain the relevant information and parameters that 
would progress over time [11]. 

Some patients who have MCI would convert to AD in future namely 
Progressive Mild Cognitive Impairment (pMCI). However, some patients 
may remain with MCI without converting to severe AD in the future 
namely Stable Mild Cognitive Impairment (sMCI). As far as a physician is 
considered, it is important to find out the future sMCI and pMCI patients 
[2,10,11]. If the physician can detect future AD patients in advance, 
then it is possible to recommend the proper diagnosis and medication 
strategies for an AD patient. This would help in reducing the progression 
of the dangerous AD to the next level where the patient and their rela-
tives would find it very difficult to deal with. In the same manner, the 
detection of sMCI also helps a physician to prescribe the required 
medication for a patient based on his or her cognitive impairment. This 
would help in saving the unnecessary costs that might spend on the MCI 
patients [2,10,11]. 

The biggest challenge in distinguishing between pMCI and sMCI 
patients are as follows:  

● Overlapping of certain characteristics is seen in both pMCI and sMCI 
patients. For example, the shrinkage of brain regions is commonly 
seen among both pMCI and sMCI patients [2].  

● It is very difficult for a domain expert to find out the crucial bio- 
markers and features that are responsible for distinguishing pMCI 
and sMCI. Thus, a physician seeks help from an advanced Machine 
Learning (ML) technique for deriving out the hidden patterns and 
relevant features that are responsible for distinguishing the pMCI 
and sMCI [2,10,11].  

● Identifying the crucial bio-markers for distinguishing pMCI and sMCI 
patients from unstructured data like medical images is a major 
challenge [2].  

● The inability to generalize the characteristics from various multi- 
modalities of data is also a major challenge [2,10,11]. 

As it is challenging to identify and distinguish the sMCI and pMCI 
patients by observation even for an experienced practitioner, a ML al-
gorithm would help in assisting the physician in properly identifying the 
AD risk patients. The ML algorithms are capable of identifying the dis-
tinguishing features that can differentiate a sMCI from a pMCI patient. It 
is difficult for the physician to generalize or classify a patient as sMCI or 
pMCI as many of the characteristics and symptoms are common for both 
sMCI and pMCI patients [2,10–12]. This is where an efficient ML algo-
rithm would be very helpful as it can identify the hidden patterns in the 
complex AD data of the patients using a mathematical model. Conse-
quently, an efficient ML model can act as a good assist for the physician 
while making crucial decisions to predict whether a patient will have a 
sMCI or a pMCI [11–13]. A workflow of ML algorithm for sMCI and 
pMCI patient includes: 1. Identifying the important features from a huge 
repository of structured or unstructured dataset, 2. Classifying the pa-
tient as sMCI or pMCI using longitudinal visit data. 

The above challenges resulted in ML researchers working on various 
neuro-imaging data, cognitive tests, and other demographic data for 
model building. It is a major challenge among ML researchers who are 
working in AD detection to generalize a specific set of bio-markers from 
unstructured and structured datasets for distinguishing pMCI and sMCI 
patients. Hence, the ML researchers have already explored various 
methods for distinguishing pMCI and sMCI patients. This research paper 

helps a new researcher who is entering MCI to AD detection using multi- 
modal data in giving a simplified overview of the previous studies. Many 
researchers have already adopted various types of features and classi-
fiers for detecting MCI to AD converter patients. This paper is a sum-
marized review of the various methods and techniques that are used for 
identifying MCI to AD converters. Consequently, this study will help an 
early researcher to find out their research direction in the classification 
of pMCI and sMCI patients. 

Hence, key focus on early prediction of MCI to AD converters using 
ML models is discussed in this paper. A systematic review of identified 
42 research papers are taken into consideration and it is summarized to 
answer the research questions. The key focus of review is towards the 
papers implemented longitudinal data in prediction of MCI to AD. The 
summarized data consists of the study participant’s country, features, 
follow up data characteristics, classifiers and performance metric that 
are implemented in the Alzheimer’s detection. These aspects are 
explained in detail for every selected study. 

This study used a review methodology for finding out how the pre-
vious studies addressed the MCI to AD conversion using ML techniques. 
The literature review is conducted on previous studies from 2017 on- 
wards for MCI to AD conversion. The proposed approach of the review 
paper involves a detailed study of 42 state of the art articles on MCI to 
AD conversion. 

This paper is organized as follows: section 2 contains the review 
protocol and methodology, section 3 contains results and discussion, 
section 4 contains the limitation of the study, section 5 contains the 
conclusion. 

2. Review protocol and methodology 

This section contains a detailed explanation of the method of review 
protocol used in the paper. Initially, a set of research questions are 
formulated. The answers to the research questions are found after 
examining the previous literature that deals with the detection of AD 
using ML techniques. Initially a search strategy is followed based on the 
research questions. Then, the data from the selected studies are 
extracted for every research question. 

2.1. Research questions 

The overall aim of this research paper is to provide an overview of 
the current state of the art in early detection of MCI to AD converters 
using machine learning approaches. For providing an overview of the 
various techniques in AD detection, the following research objectives 
are framed. The following research objectives are used to address the 
aspects such as the country of the study participants, the various data 
modalities used, ways of extracting features from unstructured neuro- 
image data and classifiers used in predicting sMCI and pMCI patients.  

● RQ1:What is the country of the study participants?  
● RQ2:What modalities of data are used as features?  
● RQ3:Which papers used feature selection techniques for ranking the 

features?  
● RQ4:How many follow up data from longitudinal data are used? 

What is the duration of follow up data?  
● RQ5:What range of MCI Conversion to AD conversions are found out 

in the papers?  
● RQ6:How many papers used machine learning and deep learning 

models?  
● RQ7:Do ensemble models improve the performance in prediction?  
● RQ8:When do the models perform better? 

RQ1 is the basic question for finding out whether a model is devel-
oped for predicting MCI to AD converters from various parts of the 
world, as AD and MCI can vary in their intensity and causes from region 
to region depending upon multiple factors [14,15]. The relevance of this 
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question is to identify whether prediction models are developed in a 
generalized population, say persons belonging to various regions or 
countries. 

RQ2 concerns the features that are used for prediction. The possible 
type of features can be from single modality or multiple modalities of 
data. The most common modalities of data are MRI, PET, functional MRI 
(fMRI), Electroencephalogram (EEG), Neuro-psychology data, Clinical 
data and Cerebro-Spinal Fluid data. Here, we search the answer for what 
type of features are used from various types of modalities. The question 
is relevant because the parameters that are responsible for MCI to AD 
conversion are not specifically discovered for distinguishing MCI to AD 
converters [16]. 

RQ3 aims to find out if researchers used any feature selection tech-
niques for getting relevant and important features. This is because the 
exact features responsible for conversion of MCI to AD is not known 
among the researchers. Therefore, it is important to find out and rank 
the important features for classifying MCI to AD converters [9,10]. 

RQ4 aims to find out the number of follow up data used by re-
searchers on the longitudinal classifiers for distinguishing MCI to AD 
converters. Further, the duration between the follow-up data is also 
observed for the papers. This is an important research question because 
it is important to investigate whether the researchers are able to classify 
the MCI to AD converters within shorter follow up period. 

RQ5 investigates the effectiveness of prediction models in finding out 
the MCI conversion to AD. If we can find out MCI to AD converters early, 
it will help in a good decision making [9]. Therefore, this question will 
explore the range of conversion of MCI to AD converters from the 
literature. 

RQ6 explores the various longitudinal models used for the classifi-
cation of pMCI and sMCI patients. The objective of this question is to 
explore the different types of longitudinal models used for finding sMCI 
and pMCI patients and to explore which models achieve better perfor-
mances. The various performance metrics such as Accuracy, Balanced 
Classification Accuracy (BCA), Sensitivity and Specificity are assessed to 
understand the classification performance for distinguishing the pMCI 
and sMCI patients. 

RQ7 aims to explore the ability of ensemble models in improving the 
prediction results. This question is investigating whether ensemble 
models are good in improving the results in terms of BCA, Sensitivity, 
Specificity for distinguishing pMCI and sMCI patients. 

RQ8 aims to explore what kind of features and classifier models are 
improving the classification performance for pMCI and sMCI patients. 

2.2. Search strategy 

PRISMA guidelines are followed for selecting the review papers [17]. 
The databases like Google Scholar, IEEE Xplore, Scopus, and Pubmed are 
searched for selecting the relevant studies. The searching for relevant 
studies is conducted by using specific keywords and phrases. We have 
used phrases such as “MCI to AD Converters”, “Early Detection of MCI to 
AD Conversion using Machine Learning”, “Early Detection of Alz-
heimers”, “Alzheimers Converters” in the journal search engines. The 
records identified by searching as on 31/08/2022 with the keywords in 
each journal are given in table 1. 

2.3. Study selection 

To select the relevant studies, an inclusion and exclusion criteria is 
developed. They are used in the various stages of the study selection 
process. The following inclusion and exclusion criteria is followed in this 
paper. 

2.3.1. Inclusion and exclusion criteria 
After getting the results from the databases for the keywords as 

mentioned in Table 1, the duplicate papers are removed from the results. 
Initially, the papers are selected after screening the abstracts. The papers 

with no proper explanation about the ML techniques in the abstract are 
excluded from the study. Then, the inclusion and exclusion criteria is 
implemented on the resultant selected papers. 

The papers are selected on the basis of inclusion and exclusion 
criteria.  

● The papers that used only longitudinal data for the research are 
selected for the study. The reason is that the longitudinal studies 
analyze the follow-up data of the patients for making the final de-
cisions about the classification of pMCI and sMCI patients. Hence, the 
studies with only cross-sectional data for the classification of pMCI 
and sMCI patients are eliminated from the study.  

● The papers that used only longitudinal data for the research are 
selected for the study because it analyses the follow-up data of the 
patients for making the final decisions about the classification of 
pMCI and sMCI patients. Hence, the studies with only cross-sectional 
data for the classification of pMCI and sMCI patients are eliminated 
from the study.  

● The papers with clear explanation about the performance metrics are 
used for the study. The studies with clear explanation about any of 
the performance metrics such as Accuracy, BCA, Sensitivity and 
Specificity are selected for the systematic review. 

2.4. Data extraction 

The relevant information for every paper needs to be extracted in this 
stage. The following information is extracted from each paper that will 
answer the following research questions: country of study participants, 
the number of follow-up longitudinal data used, range of MCI conver-
sion predicted, description of the modalities of data, is automatic feature 
extraction used or not, type of algorithm used (machine learning, deep 
learning), ensemble learning and the Sensitivity, Specificity, and Accu-
racy reported in each of the finally selected papers. As far as the results 
are concerned, the best results in each paper (in terms of Accuracy, 
Sensitivity, and Specificity) are chosen as the answer to the research 
questions. The research papers contain many experiments (by varying 
features, follow-up data, and model combinations), and the best out of 
the experiments (in terms of Accuracy, Sensitivity, and Specificity) is 
chosen as the result of our study. 

Table 1 
Number of records found for each query in journal search engines as on 03/10/ 
2022.  

Search 
Engine 

Keywords Number of Records 
Found 

Google 
Scholar 

MCI to AD Converters 9970 
Early Detection of MCI to AD Conversion 
Using Machine Learning 

5250 

Early Detection of Alzheimers 4660 
Alzheimers Converters 7545 

IEEE Xplore MCI to AD Converters 2345 
Early Detection of MCI to AD Conversion 
Using Machine Learning 

1610 

Early Detection of Alzheimers 1750 
Alzheimers Converters 1992 

Scopus MCI to AD Converters 1200 
Early Detection of MCI to AD Conversion 
Using Machine Learning 

1809 

Early Detection of Alzheimers 1610 
Alzheimers Converters 1890 

Pubmed MCI to AD Converters 5500 
Early Detection of MCI to AD Conversion 
Using Machine Learning 

5610 

Early Detection of Alzheimers 5890 
Alzheimers Converters 5100  
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3. Results and discussion 

This section contains detailed information about the results and 
discussions. 

3.1. Study selection 

In this section the overall study selection procedure is explained in 
detail. Searching in the journal repositories like IEEExplore, Google 
Scholar, Pubmed, and Scopus are reported with 15450 results. 735 
duplicate papers are removed from the reported results. Then, the ab-
stracts are screened for the resulting 14715 papers. There was an 
exclusion of 3343 articles after abstract screening. Then, the papers 
without any Artificial Intelligence applications which explained only the 
scientific aspects of MCI and AD are excluded at the abstract level 
screening. Among the 11372 articles assessed for eligibility, there was 
an exclusion of the papers that do not have MCI to AD converters (n =
3356), longitudinal data (n = 4200), specified either method or features 
(n = 3513), performance metrics description including Accuracy, 
Sensitivity, Specificity (n = 391). Consequently, 42 studies were selected 
for conducting the systematic review. Fig. 1 contains the exclusion 
criteria used in the paper selection process. 

Following are the public datasets used for predicting pMCI and sMCI 
patients from the literature. 

Public datasets for predicting the pMCI and sMCI patients are as 
follows:  

● Alzheimer’s Disease Neuro-Imaging Initiative (ADNI) Dataset: 
ADNI dataset is used for uniting various researchers who are working 
on the progression of MCI to AD. ADNI project consists of multi- 
modal data belongs to MRI, PET, neuro-imaging, genetic and other 
cognitive test data [18–20]. The dataset consists of participants’ data 
from North American hospitals collected over 5 years. The main aim 
of the research project is to examine and find out the bio-markers 
that are responsible for the early detection of Alzheimer’s Disease 
using Machine Learning algorithms [18–20]. ADNI datasets are 
developed for optimizing, validating, standardizing clinical trial 
measures and biomarkers developed for clinical research [18,19].  

● Australian Imaging Biomarkers and Lifestyle Study of Ageing 
(AIBL) dataset: AIBL dataset consists of 18-month follow-up data of 
Australian patients ranging from 50 to 90 years. The dataset consists 
of MRI, PET, cognitive test and lab test data of the patient which is 
collected over 1 year. The primary objective of the AIBL dataset is to 
find out which cognitive tests, medical imaging characteristics, and 
lab tests are crucial in distinguishing MCI and AD patients [20–22]. It 
consists of a multidisciplinary research team from researchers 
located in Perth, Sydney, Melbourne, Canberra, and Brisbane 
[20–22].  

● Open Access Series of Imaging Studies (OASIS) dataset: OASIS 
dataset consists of multimodal of more than 1000 patients collected 
over various points of time. The dataset consists of neuro-imaging, 
cognitive tests data that are collected over a period of time. The 
dataset consists of 3D sliced MRI images of more than 10000 images. 
The objective of the project is to find out the future MCI and AD 
patients in advance using clinical, neuro-imaging, genetic and other 
biomarkers [23,24]. The OASIS dataset consists of patient’s data 
collected from 416 subjects aged from 16 to 96 years. The subjects of 
the study are right handed. Most of the samples of the dataset are 
more than 50 years old [23,24].  

● Dementia Bank clinical dataset 

Dementia Bank clinical dataset consists of Alzheimer’s and Healthy 
Control patient data from the speech data. It consists of dementia- 
related data of 500 patients collected over various time points [25, 
26]. The data set consists of transcripts and video recordings of AD and 
healthy patients. This data set consists of speech utterances of the AD 

and HC patients that were observed after performing a recall test on 
multiple scenes [25,26]. 

3.1.1. RQ1:What is the country of study participants?  

● Of the included studies, ADNI dataset is used in many studies [18, 
19]. The participants of the dataset are from various parts of USA and 
Canada. The papers that experimented on ADNI dataset are: [27–62]. 
All the studies mentioned above were conducted on study partici-
pants from North America. 3 studies were conducted on participants 
from Europe [50,54,55,63,64].  

● One study contains study participants each from Portugal [63] and 
Germany [64].  

● Inter continental study on participants from Milan in Italy is mixed 
with the ADNI dataset in Ref. [65]. 

Fig. 1. Exclusion criteria used in the paper selection process.  
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3.1.2. RQ2:What are the modalities of data used as features? 
Our main focus on this research question is to find out the papers 

which used single modality and multiple modalities of features for the 
prediction purposes.  

● Single Modality: 

Data from a single modality alone is used for the prediction purpose 
in many studies. 

MRI: Hippocampal volume is selected as feature in Refs. [27,35]. 
Free Surfer Intensity values of selected regions are used by the re-
searchers [44,49]. Entorhinal Volume is used by the researchers in 
Ref. [27]. Amygdala distance is used in the experiments [36]. Further, 
Intracranial volume is also used by the studies [27]. Cortical thickness is 
also used in the study [34,48]. Distinguishing Voxels of brain MRI are 
selected by the researchers using Logistic Regression for longitudinal 
training data in Ref. [38]. Gyrus height is again another feature used by 
the researchers in Ref. [48]. A network based feature is created for a 
purely MRI based feature selection technique by Ref. [48]. Whole 
patches of MRI image is used as a feature in 1 study [29]. The whole 2D 
slice’s intensity features of a brain MRI image is used by the researchers 
in Ref. [38] for distinguishing sMCI and pMCI. A transfer learning 
approach is employed in the whole slices of MRI image for dis-
tinguishing the pMCI and sMCI patients [54]. The transfer learning 
approach used by the researchers in Ref. [54] is focused on hyper-
parameter tuning of convolutional neural network on the basis of age. 
An attention based neural network architecture is developed by the re-
searchers in Ref. [66] for predicting MCI to AD conversion patients. 

PET: PET data alone is used in Ref. [31]. Metabolic intensity values 
are extracted from the raw PET images for all patches by the researchers 
in Ref. [31]. PET imaging techniques are widely used by the researchers 
for early detection of Alzheimer’s disease using convolutional and 
recurrent neural networks [67]. There were lot of studies conducted for 
finding out the difference in PET feature like florbet-pair for dis-
tinguishing AD and healthy control patients. PET imaging techniques 
are widely used by the researchers for finding out the Alzheimer’s dis-
ease patients from the past. PET imaging technique is capable of finding 
out the metabolic features in the brain. For instance, the cognitive 
memory is high for people with good metabolism inside the brain [31, 
67]. 

Electroencephalogram (EEG): EEG data is used by the researchers 
in Ref. [52]. They created a graph structure for the functional connec-
tivity in the EEG signals of sMCI and pMCI patients [52]. Researchers 
also explored the Time frequency, Bi-Spectral features of EEG data for 
accurate prediction of MCI to AD converters [55].  

● Multiple Modality: 

From the selected papers, in 12 papers researchers experimented 
with multiple modalities of data say MRI, PET, Neuro-psychological and 
clinical data. A Combination of unstructured data from various modal-
ities say that MRI, PET and clinical data are used by the researchers in 
Ref. [34]. They used Temporal Gyrus and Hippocampus volumes from 
MRI, Independent Component Analysis (ICA) from PET and MMSE 
values as neuro psychological assesement data [34]. A combination of 
MRI and PET is used by the researchers in Ref. [37]. 

A combination of functional MRI (fMRI) and MRI is used in the study 
[46]. A connectivity matrix for 93 ROI is created as a feature and the 
features of FREESURFER software are extracted from MRI [46]. 

A combination of structured data from various modalities is used by 
the researchers in 4 studies [40,42,50,63]. Both MRI and 
Neuro-psychological data are used by the researchers in Ref. [40]. They 
used Hippocampus, Ventricles, Fusiform as MRI data, Alzheimer’s Dis-
ease Assessment Scale-cognitive subscale (ADAS-Cog) and MMSE as 
neuro-psychological data in the study. Another study [63] used both 
neuro-psychological and clinical data for the prediction purpose. 

Neuropsychological scores such as MMSE, ADAS-Cog and clinical data 
such as demographics and cardiovascular scores are used in these 
studies. Both MRI and CSF data are used in Ref. [41]. Hippocampal 
Volume is used as MRI feature and A-Beta data is used as CSF features in 
this study [41]. Researchers used both structured MRI and CSF data for 
prediction purpose [64]. MRI data consists of Hippocampal volumes and 
Tau, A-Beta are used as CSF features in the study [64]. Researchers in 
Ref. [50] used socio-demographics data such as age, sex, years of edu-
cation, marital status and psychological test data such as MMSE, 
ADAS-Cog, Rey Auditory Verbal Learning (RAVLT) in the experiments. 
A health ageing trajectory model was developed on multimodal struc-
tured dataset by the researchers in Ref. [58] for predicting MCI to AD 
converters. 

A hybrid of structured and unstructured data from various modalities 
are used in 5 studies [34,41,43,45,47,53]. Unstructured MRI, PET and 
neurological, clinical data are used by the researchers in Ref. [34]. The 
study includes MRI data of voxel based morphometry and volume based 
morphometry, neuro-psychological data as MMSE and clinical data as 
demographics medical history data [34]. In another study, a combina-
tion of MRI, PET, CSF, Demographics and Neuro-psychological data is 
used by the researchers in Ref. [43]. Similarly, a mix of MRI, Genetic and 
Neuro-psychological data is used by the researchers in 2 studies [45,47]. 
Atrophy score of each MRI, Polyhazard Score is used as a genetic score 
and MMSE Neuro-psychological data is used as features in the study 
[45]. In a similar study, researchers used texture value of voxels of MRI, 
APOE4 Genetic data and MMSE as neuro-psychological data [47]. The 
texture value of voxels are captured using neural networks. Texture 
values capture the Gray and White matter intensity inside the brain. 
These features are combined with the APOE4 genetic data and the most 
commonly used cognitive score namely MMSE [47]. In another study, 
Unstructured MRI, PET and CSF are used as features for sMCI and pMCI. 
MRI data consists of Gray Matter pixel values of 93 ROIs. These 93 ROIs 
are captured in the three views of neuroimage namely coronal, sagittal, 
transverse. It is combined with CSF data which consists of TAU and 
A-Beta protein levels [41]. The Ventricular Cavity and reduction of Gray 
Matter volumes are extracted from the MRI images by the researchers in 
Ref. [53]. They also added the cognitive test Mini-Mental State Exami-
nation (MMSE) for predicting the sMCI and pMCI patients [53]. The 
whole patches of brain image and cognitive assessment data is used by 
the researchers in Ref. [56] for sMCI and pMCI converters. 

3.1.3. RQ3:Which papers used automatic feature extraction methods? 
Some papers used automatic feature extraction methods for 

extracting relevant information. The feature selection methods are 
employed in unstructured data like MRI, PET, EEG.etc. Whereas some 
papers do not have any feature extraction methods. The papers taken for 
survey are classified based on feature extraction as given below.  

– No Feature Extraction 

There are 15 studies without any feature extraction methods. These 
papers used all the structured features that are already derived from the 
existing literatures [27,33–36,40–42,47,49,50,63,64].  

– Automatic Feature Extraction 

16 studies applied automatic feature extraction techniques on un-
structured data such as MRI, PET, and EEG [28–33,37–40,43–46,48,51, 
65]. Following are the various techniques used for feature extraction 
from MRI, PET, and EEG data. 

3.2. MRI 

It is observed that the researchers were mainly focused on using deep 
neural network architectures for extracting features from MRI data 
either on entire images or focused areas of the brain. 
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The studies that considered the whole patches of the brain for 
automatic feature extraction are as follows: 

Whole Patches of the brain: A deep learning method combined 
with a sparse regression model is used for predicting sMCI and pMCI 
patients [28]. A deep CNN is used for extracting the neuro-image fea-
tures which is then combined with a sparse regression model for accu-
rate classification of sMCI and pMCI patients [28]. A multi-domain 
transfer learning based approach is used by the researchers for classi-
fiying the sMCI and pMCI patients [32]. Transfer learning is applied on 
various kinds of slice image for classification of sMCI and pMCI patients. 
A different approach was used by the researchers in Ref. [33] where a 
graph based network is extracted from the neuroimages and graph based 
measures are extracted for distinguishing sMCI and pMCI patients. A 
CNN based architecture is developed for the early conversion of sMCI 
patients by the researchers in Ref. [38] for predicting 1 year MCI to AD 
conversion patients. A supervised non-parametric method is imple-
mented by the researchers in Ref. [40] on longitudinal data for sMCI and 
pMCI prediction. The study conducted by the researchers in Ref. [43] 
used a deep neural network method combined with an automatic feature 
selection technique for classifying sMCI and pMCI patients. CNN is used 
by the researchers in Ref. [44] for classifying sMCI and pMCI patients. 
An ensemble of CNN is used by the researchers in Ref. [65] for the 
classification of pMCI and sMCI patients. Researchers also implemented 
an age adjusted neural network for predicting MCI to AD patients. The 
neural network has an age adjusting layer which is capable of differ-
entiating the sMCI and pMCI patients [54]. A CNN neural network ar-
chitecture is implemented for extracting the GM intensity from the MRI 
images [56]. A variational auto-encoder neural network architecture is 
used for extracting the image intensity features from MRI images [57]. 
High dimensional MRI images are processed using CNN for the detection 
of sMRI and pMRI patients in the study conducted by the researchers in 
Ref. [56]. The researchers also developed a novel neural network ar-
chitecture for the detection of sMCI to pMCI patients using neural 
network architectures [51]. 

Transfer learning approach with 3D ResNet architecture utilizing a 
zero shot learning is implemented by the researchers in Ref. [66]. The 
advantage of this method is that it is implemented on less number of MRI 
image data but achieved a higher classification performance for sMCI 
and pMCI detection. Again researchers applied a transfer learning 
method for extracting the intensity features from MRI images using an 
attention based network for capturing the functional connectivity of the 
brain. 

The ensemble classifiers are used by the researchers in Ref. [65] for 
the accurate prediction of sMCI and pMCI patients. They used an 
ensemble of many CNN classifiers on the entire MRI brain image. 

Domain Specific Regions: A deep learning architecture is devel-
oped on a specific Region of Interest (ROI) by the researchers in 
Ref. [29] where a multi-instance based deep learning framework is 
developed for extracting the features. The relevant features from 91 
ROI’s are extracted using multiple instance based deep learning archi-
tecture. Karuppi et al. [45] used a feature extraction technique focused 
on finding the structural volume of MRI data from MRI images. In 
another study, the researchers extracted morphological features from 
the MRI data on 91 ROI that are relevant in classifying sMCI and pMCI 
patients [48]. 

3.3. PET 

The study conducted by the researchers in Ref. [30] used a 
multi-scale approach for the diagnosis of Alzheimer’s disease detection. 
They used a CNN that can extract multiple features from multiple 
sub-regions of the PET image. They considered all the sub-region fea-
tures of the PET image at various slices for feature extraction [30]. 

3.4. Multimodal data 

A multimodal image fusion is performed by the researchers in 
Ref. [33] for the early detection of sMCI and pMCI patients. A hierar-
chical framework was developed by the researchers in Ref. [39] for 
selecting the relevant features that are responsible for classifying sMCI 
and pMCI patients. An automatic feature extraction technique that ex-
tracts the functional connectivity using EEG data within brain regions 
accompanied by cognitive tests is implemented by the researchers in 
Ref. [52]. A novel multimodal EEG data based study was conducted by 
the researchers in Ref. [55] for automatic feature extraction. They 
extracted High Order Statistics from the Bi-Spectrum data for dis-
tinguishing sMCI and pMCI patients. The CNN is used by the researchers 
for extracting neuro-image intensity features from the MRI data [37]. A 
combination of cognitive tests and lab test data is also used by the re-
searchers for classifying sMCI and pMCI patients [37]. 

An integration of MRI and Functional MRI is made by the researchers 
in Ref. [46] for predicting the sMCI and pMCI patients. They used neural 
network architectures for classifying sMCI and pMCI patients. 

3.4.1. RQ4:How many follow-up data from longitudinal data are used? 
What is the duration of the follow-up data? 

Follow-up time period of a patient refers to the frequent time periods 
in which a patient’s conditions are monitored in a hospital or by a 
doctor.1 The 3 follow-up duration used by the researchers for prediction 
of MCI to AD converters are 6 month, 12 month and 1 year respectively. 
A detailed explanation of the follow up duration and the number of such 
follow-up (visits) used by the researchers are explained in this section.  

– 6 MONTHS FOLLOW-UP: 

6 months follow-up are examined in the following studies: [27–48, 
50,59]. 

Following is the information about how long the 6 month follow-up 
data is used by the researchers. One study contains the complete 1.5 year 
follow-up data of patients [28]. The complete 2 year follow-up data is 
used in the study [31]. The complete 2.5 years data is used in the study 
[42], 

Among these complete 3 year follow-up, 6 month duration data are 
used by the researchers in Refs. [27,29,30,32–34,36,37,39,41,43–46, 
48–50,65]. The complete 3.5 years follow-up data is used in Ref. [35]. 
However, the complete follow-up data till all 3.5 years is not used in this 
study. The complete 4 years data is used in Refs. [38,47].  

– 3 years, 12 month: 

The study conducted by the researchers in Ref. [64] contains 
follow-up data of 12 months duration and it is followed for 3 years 
(number of follow-up is 3).  

– 1 year, 5 month: 

The study conducted by the researchers [63] contain follow-up data 
of 1 year duration and it is followed for the next 5 years (number of 
follow up data used is 5).  

– 3 years 

Follow-up data is 2 years for [61].  

– Unclear follow up data 

1 https://www.cancer.gov/publications/dictionaries/cancer-terms/def/ 
follow-up. 
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The follow-up data is unclear for the studies in: [51–58,60,62]. 

3.4.2. RQ5:What range of MCI conversion to AD is used? 
Range of MCI to AD conversion is very vital in proper health care 

decision making processes. The description of time duration of MCI to 
AD conversion ranges are explained below.  

– Six Month: 

The shortest conversion time span in the literature is 6 months [39, 
49].  

– One Year: 4 studies predicted 1 year conversion from MCI to AD [30, 
37,38,64].  

– One and Half Year: 2 studies experimented on 1.5 year conversion 
prediction of MCI to AD [28,40].  

– Three Year: Most of the studies experimented on prediction of 3 year 
conversion of MCI to AD [29,31–34,36,41–43,45–48,50,65].  

– Five Year: Longest time span of prediction of MCI to AD is 5 years 
which is experimented in the paper [63].  

– No Conversion Range (Just MCI to AD Converters Without Time 
Period Specification). There was no specific time of conversion from 
MCI to AD in the studies [35,44]. Both studies predicted whether a 
person will have conversion from MCI to AD without finding the time 
of conversion.  

– The MCI to AD conversion range is unclear in the following studies: 
[49–62,65]. 

3.4.3. RQ6:How many papers used machine learning and deep learning 
separately? 

A classification of papers which used machine learning and deep 
learning techniques is as given below.  

– ML algorithms: 

Following ML algorithms are used: 
SVM is widely used by researchers as a final classifier for predicting 

the sMCI and pMCI detection. Initially, the deep neural networks such as 
CNN or different types of CNN are used for extracting the relevant fea-
tures from the unstructured data. Then, the extracted features are fed 
into the SVM classifier. SVM is used in the given studies: [34,36–40,42, 
43,47,48,64]. 

LASSO is used for both the feature selection and classification pur-
pose in the study conducted by the researchers in Ref. [31]. A feature 
selection framework is built for selecting the relevant features and a 
classifier is implemented to classify the sMCI and pMCI patients [31]. In 
addition, a linear Sparse Regression model is developed by the re-
searchers in Ref. [41]. 

The Cox based survival event time detection models are used by the 
researchers in Refs. [33,45]. A Cox regression model is used as a clas-
sification model for predicting the sMCI and pMCI patients using the 
unstructured data collected by CNN models in the study [33]. Similarly, 
a Cox hazard model is implemented by the researchers in Ref. [45] for 
classifiying sMCI and pMCI patients. This model helps in identifying 
whether a patient belongs to sMCI or pMCI category on the basic Cox 
probability value [45]. 

Researchers also used longitudinal classifiers for the detection of 
sMCI and pMCI patients [35,63] for detecting the sMCI and pMCI pa-
tients. A Mixed Effects Model is proposed by the researchers in Ref. [63] 
for the predicting sMCI and pMCI patients. This model considers all the 
varying visit intervals of the patients. Moreover, a sliding window based 
approach is also used for the classification of sMCI and pMCI patients 
[35]. This model is capable of measuring the influence of one visit over 
the other in predicting a patient as sMCI or pMCI. 

An ensemble of Machine Learning classifiers is also used by the re-
searchers [27,50]. An ensemble of SVM and Logistic Regression is used 

by the researchers in Ref. [27] for sMCI and pMCI detection. Likewise, 
an ensemble of SVM and LR is used by the researchers in Ref. [50] for 
distinguishing sMCI and pMCI patients. Table 2 contains the purpose 
and the available configuration information about the ML algorithms 
used in the study.  

– Deep Learning: 

Deep Learning neural network architectures are used by the re-
searchers as classifiers as well as feature extractors by the researchers in 
Refs. [28,30,44,46,49,52–62,65]. A CNN architecture is used for 

Table 2 
Configuration of ML algorithms used in previous works. RBF-Radial Basis 
Function, FCL-Fully Connected Layers, BLR: Binary Logistic Regression.  

Reference ML Configuration Purpose 

[27] SVM: RBF kernel Classification of AD based on 
structural features 

[28–30,47] [50, 
54,66] 

CNN: 8 FCL, Sigmoid 
(Activation) 

Capturing Gray and White Matter 
Intensity 

[31] SAE: Rectified Linear 
Unit 

Capturing Gray and White Matter 
intensity 

[32] CNN + SVM CNN: Metabolic Intensity Extraction 
CNN: 3D with Sigmoid SVM: Classification of sMCI, pMCI 

[33,35,36,39, 
65] 

CNN + SVM CNN: Gray and White Matter 
Extraction 

CNN: Rectified Linear 
Unit 

SVM: Classification of sMCI, pMCI 

[34,44] Cox Regression Models Calculating AD survival from 
multimodal data 

[37] SVM Classification of sMCI, pMCI 
patients 
Using Amygdala distance 

[38] SAE + SVM SAE: Capturing intensity from 
multimodal neuroimages  

SVM: RBF Kernel SVM: Classification of pMCI, sMCI 
patients 

[41] LR Selection of significant Voxels 
classifying sMCI, pMCI 

[40,61] CNN, SVM, SVR CNN: Automatic Feature Extraction 
SVR: Estimating mean Gray and 
White matter 
SVM: Classification of sMCI, pMCI 

[42] Sparse Learning 
Regression 

Causal Inference Model 
Identifying relation between 
features 

[38,43,46,59, 
64] 

SVM: Polynomial Kernel Classifying pMCI, sMCI patients 

[45,52] SVM: RBF Kernel Classifying pMCI, sMCI using graph 
measures 

[63] CNN + BLR CNN: Undefined FCL 
BLR: classification of pMCI, sMCI 
patients 

[48] Bayes Classifier Probabilistic model for speech 
features 

[49] CNN + Graph networks CNN: Automatic Extraction of 
neurimage features 

CNN: Activation 
function as tanh 

Graph Network: Extracting 
Connectivity measures 

[60] SVM, KNN, MLP Ensemble Voting Classifier 
SVM: RBF Kernel 
KNN: 5 
MLP: Undefined 

[53] CNN with attention 
mechanism 

Focusing on ROI more 

[55] CNN Extracting features from EEG data 
[66] CNN + SVM CNN: Extracting neuroimage 

intensity 
SVM: RBF kernel CNN + SVM: Classifying sMCI, 

pMCI patients 
[58] Multi-Kernel SVM Classifying pMCI, sMCI patients 

2 RBF kernel 
1 Polynomial kernel 

[44,49,65] CNN + RNN CNN: Automatic Feature Extraction 
RNN: Capturing Temporal features  
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extracting the neuroimage intensity features such as Gray Matter and 
White Matter intensity by the researchers in Refs. [28,30,46,52–55, 
58–62,65]. 

Similarly, a combination of CNN and Recurrent Neural Network 
(RNN) is used by the researchers in Refs. [44,49,65]. These models are 
capable of extracting the spatial intensity based features using the deep 
CNN architectures. Then, the deep RNN architectures are used for 
extracting the temporal information from the extracted features of the 
unstructured data [44,49,65]. 

3.4.4. RQ7:Do the ensemble models improve the sMCI and pMCI 
prediction? 

Ensemble learning algorithms are used in Refs. [27,29,33,39,40,44, 
49,50,50,65]. The ensemble deep learning architectures such as 
CNN-RNN combination are used by the researchers in Refs. [44,49,65] 
for capturing the spatio-temporal features from the neuro-images and 
expected to increase the classification performance. Moreover, the 
ensemble of classifiers is used for classifying whether a patient is s MCI 
or pMCI is also expected to increase the classification performance of 
detecting sMCI and pMCI with a decision making approach that captures 
the diverse information [29,33,39,40,50]. 

The range of accuracy reported using ensemble models is 74%–89%. 
The range of sensitivity reported using ensemble models is 54%–89%. 
The range of specificity reported using ensemble models is 73%–92%. 

On comparing the overall performance of the models, it is observed 
that the ensemble models have not achieved the best results. In fact, 
ensemble models give better results but not the best ones. However, this 
again emphasize towards the importance of finding relevant features. 

3.4.5. RQ8:When do the models perform better? 
In this section, the range of values reported for various performance 

metrics such as accuracy, sensitivity and specificity is analysed and 
analysis of what type of features and models are good in performing 
better results is given.  

– Best Accuracy, Sensitivity and Specificity: 

A combination of fMRI and MRI data features has achieved a higher 
accuracy, sensitivity and specificity of 96%, 94% and 100% respectively 
on ADNI dataset followed for 3 years within a time duration of 6 months.  

– Overall Performance 

Overall, the range of accuracy, sensitivity and specificity reported 
are 65%–96%, 54%–96%, 53%–100% respectively as given in table 3. 
As far as single modality is concerned, the range of accuracy, sensitivity 
and specificity are 71%–92%, 42%–96%, 53%–92% respectively as 
given in table 3. As far as multi-modality of data is concerned, the range 
of accuracy, sensitivity and specificity are 74%–96%, 54%–94%, 83%– 
100% respectively as given in table 3. From the above results, in general, 
it is clear that the models performed comparatively better with multiple 
modalities of data.  

– Parameter Performance within modalities 

The range of accuracy, sensitivity and specificity reported for MRI 
data alone is 65%–83%, 69%–95% and 53%–90% respectively as given 
in table 3. Free Surfer intensity values experimented by Refs. [44,49] has 
shown better performance in the result as given in table 3. The accuracy, 
sensitivity and specificity for the study [31] reported for PET data alone 
is 83%, 87% and 78% respectively. The extraction of Gray and White 
Matter from the unstructured raw MRI data using automatic feature 
extraction and deep learning CNN reported with results <85% (in terms 
of accuracy, sensitivity and specificity) [28,30]. However, using Support 
Vector Machine (SVM) on unstructured data reported a better specificity 
in the range 77%–92% table 3. Structural Volume Ratio and Godesic 

Length in the study [34] is reported with the highest results <90% (for 
accuracy, sensitivity and specificity) which is a promising result. One 
study used neuropsychological data alone on portugal study participants 
[63] has achieved an accuracy, sensitivity and specificity of 76%, 56% 
and 76% respectively.  

– Parameter performance within populations 

However, when mixing ADNI and MILAN study participants using 
MRI data alone has not shown a better performance with accuracy, 
sensitivity and specificity of 74%, 75% and 75% respectively which 
pinpoints towards more research on finding better parameters and 
learning models while developing algorithms for generalized pop-
ulations (mixing populations in various geographical locations) as given 
in Table 3. However, in this experiment researchers used MRI data alone 
for achieving this. None of the studies in the literature has used multi 
modalities of data for early prediction of MCI to AD converters for inter 
continental study participant populations [65]. In addition, the two 
studies [63,64] conducted on German and Portugal participants has 
used different modalities for prediction tasks (MRI, CSF for German and 
Neuro-psychological assesement data for Portuogal). However, the 
study [64] on German participants with MRI data and CSF performed 
better than the Neuropsychological data with accuracy, sensitivity and 
specificity of 82%, 85% and 90% respectively.  

– Performance with respect to follow up period: 

Following 8 follow-up data for 6 months has achieved a high accu-
racy of 92% which is a slight increase in 2% accuracy as compared to 
following 6 month follow up data for 6 months using MRI data (3 years) 
as given in table 3. In general, the better results are reported using small 
duration of follow up periods (6 months in the study) as compared to 1 
year as given in table 3.  

– Performance with respect to the range of MCI converters predicted 

The accuracy, sensitivity and specificity for 6 month conversions are 
74%, 81% and 71% respectively [49] as given in table 3. In general, 
better results are reported for 3 year MCI to AD converters with 4 studies 
reported with accuracy, sensitivity and specificity 85% [36,40,42,47] as 
given in table 3 respectively. 

A full description of the characteristics of data is given in table 3. 

3.4.5.1. Research challenges. Following are some the major research 
challenges that need to be addressed by the researchers:  

– Identification of the correct and exact bio-markers from the neuro- 
imaging data is a challenging task for the researchers. This task be-
comes even more difficult when it comes to a specific population. For 
instance, the researchers face a challenging task while identifying the 
most precise bio-markers that are responsible for classifying the MCI 
to AD converters and non MCI to AD converters.  

– The researchers also face a challenging task for finding out the 
relevant features that are responsible for classifying the MCI to AD 
converters and non-MCI to AD converters from a set of multimodal 
features. Finding the important and relevant features from the 
multiple-modal features is also a challenging task for the researchers. 

The finding of quick MCI to AD converters, say within 6 months to 1 
year is also a challenging task. This is a challenging task because there is 
an urgency required among the research community for immediately 
finding the quick MCI to AD converters and it is required to develop very 
good longitudinal models for addressing this. 

3.4.5.2. Future directions. Following are the future directions where the 
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Table 3 
SVM-support vector machine, ICV-Intracranial Volume, CNN-convolutional neural networks, ROI-Region of interest, SAE-Spatial auto encoder, GM-Gray matter, ROI- 
Region of interest, ICA-Independent component analysis, MLP-Multilayer perceptron, BLR-Binary logistic regression.  

Reference Country Single Modality 
Description 

Multiple Modality 
Description 

Number and 
Duration of 
Follow up 
Data 

MCI 
Range 

Machine 
Learning 

Deep 
Learning 

Ensemble 
Learning 

Result 

[27] USA, 
Canada 

✓ X 6 Unclear ✓ X X Accuracy 
71% 

MRI 6 months SVM Sensitivity 
96% 

Hippocampal 
Volume, ICV, 

Specificity 
53% 

Entorhinal Volume 
No Feature Selection 

[28] USA, 
Canada 

✓ X 3 1.5 years X ✓ ✓ Accuracy 
74% 

MRI 6 months CNN Sensitivity 
70%% 

93 ROI Specificity 
78% Automatic Feature 

Selection 
[29] USA, 

Canada 
✓ X 6 3 years ✓ ✓ ✓ Accuracy 

76% 
MRI 6 months Regression CNN Sensitivity 

42% 
Whole Patches in 
Image 

Specificity 
82% 

Automatic Feature 
Selection 

[30] USA, 
Canada 

✓ X 6 1 year X ✓ ✓ Accuracy 
82% 

MRI 6 months Sensitivity 
81% Patches of Gray and 

White Matter 
Regions 
Automatic Feature 
Selection 

SAE Specificity 
82% 

[31] USA, 
Canada 

✓ X 4 3 year ✓ X X Accuracy 
83% 

PET 6 months SVM Sensitivity 
87% 

Metabolic Intensity 
Values 

Specificity 
78% 

Automatic Feature 
Selection 

[32] USA, 
Canada 

✓ X 6 3 years ✓ X ✓ Accuracy 
73% 

MRI 6 months SVM Sensitivity 
69% 

93 ROI GM Specificity 
77% 

Automatic Feature 
Selection  

[33] USA, 
Canada 

X ✓ 6 month 3 years ✓ X X Accuracy 
84% 

MRI (Temporal Gyrus, 
Hippocampus), PET (Both 
ICA) 

Cox Models Sensitivity 
86% 

Clinical 
Variables 

Specificity 
82% 

No Feature 
Selection 

[34] USA, 
Canada 

✓ X 6 3 year ✓ X X Accuracy 
92% 

MRI 6 months SVM Sensitivity 
95% 

Structural Volume Ratio, 
Godesic Length 

Specificity 
90% 

No Feature Selection 
[35] USA, 

Canada 
✓ X 6 Unclear ✓ X X Accuracy 

76% 
MRI (Cortical 
thickness 

6 months SVM Sensitivity 
70% 

Hippocampus volume) Not 
Continous 

Specificity 
81% No Feature Selection 

[36] USA, 
Canada 

✓ X 6 3 years ✓ X X Accuracy 
88% 

(continued on next page) 
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Table 3 (continued ) 

Reference Country Single Modality 
Description 

Multiple Modality 
Description 

Number and 
Duration of 
Follow up 
Data 

MCI 
Range 

Machine 
Learning 

Deep 
Learning 

Ensemble 
Learning 

Result 

MRI 6 months Sensitivity 
86% 

Amygdala distance Specificity 
90% No Feature Selection 

[37] USA, 
Canada 

X ✓ 6 1 year ✓ X ✓ Accuracy 
90% 

Structural MRI SVM Sensitivity 
86% 

FDG-PET 6 months Specificity 
83% (Patch Volume, Mean 

Intensity of GM ROI’s) 
Automatic Feature 
Selection 

[38] USA, 
Canada 

✓ X 8 1 year ✓ X X Accuracy 
92% 

MRI 6 months SVM Sensitivity 
93% 

Gray matter regions Specificity 
92% Automatic Feature 

Selection 
[39] USA, 

Canada 
✓ X 6 Unclear ✓ X ✓ Accuracy 

79% 
North 
America 

MRI 6 months Logistic 
Regression 

Sensitivity 
87% 

Selection of Voxels Specificity 
73% Automatic Feature 

Selection 
[41] USA, 

Canada 
X ✓ 3 1.5 years ✓ X ✓ Accuracy 

74% 
North 
America 

MRI, PET, CSF 6 months SVM, SVR Sensitivity 
54% 

MRI - GM 93 ROI Specificity 
88% PET - Mean Intensity 93 

ROI 
CSF (TAU, A-BETA) 
Automatic Feature 
Selection for MRI, PET 

[40] USA, 
Canada 

X ✓ 6 3 years ✓ X ✓ Accuracy 
89% 

North 
America 

MRI, Neuropsychological 6 months Sparse 
Learning 
Method 

Sensitivity 
89% 

MRI-Hippocampus, 
Ventricles 

Specificity 
92% 

MTL, Entorhinal, Fusiform 
NM- ADASCog, MMSE 
No Feature Selection 

[42] USA, 
Canada 

X ✓ 5 3 years ✓ X ✓ Accuracy 
91% 

North 
America 

MRI - Medial Temporal, 
Etorhinal Cortex 

6 months SVM Sensitivity 
95% 

Neuropsychological Specificity 
87% Clinical 

No Feature Selection 
[64] Germany X ✓ 3 1 year ✓ X X Accuracy 

82% 
Europe MRI-Hippocampal Volume 12 months SVM Sensitivity 

85% 
CSF - Tau, A-Beta Specificity 

70% No Feature Selection 
[43] USA, 

Canada 
X ✓ 6 3 years ✓ X X Accuracy 

73% 
North 
America 

MRI-Volume based 
morphometry, Voxel based 
morphometry 

6 months SVM Sensitivity 
72% 

PET,CSF Specificity 
74% Demographics, Medical 

Medical History, 
Neuropsychological 
Automatic Feature 
Selection 

[46] USA, 
Canada 

X ✓ 6 Unclear ✓ X X Accuracy 
96% 

(continued on next page) 
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Table 3 (continued ) 

Reference Country Single Modality 
Description 

Multiple Modality 
Description 

Number and 
Duration of 
Follow up 
Data 

MCI 
Range 

Machine 
Learning 

Deep 
Learning 

Ensemble 
Learning 

Result 

North 
America 

rs-fMRI,MRI 6 months SVM Sensitivity 
94% 

rs-fMRI- Connectivity 
matrix for 93 ROI 

Specificity 
100% 

MRI- Free Surfer Features 
No Feature Selection 

[45] USA, 
Canada 

X ✓ 6 3 years ✓ X X Accuracy 
78% 

North 
America 

MRI-Atrophy score, 
Genetic-PHS, MMSE 

6 months Cox 
Proportional 
Models 

Sensitivity 
79% 

No Feature Selection Specificity 
77% 

[44] USA, 
Canada 

✓ X 6 3 years X ✓ X Accuracy 
79% 

North 
America 

MRI 6 months CNN Sensitivity 
84% 

Freesurfer Intensity 
Values 

Specificity 
74% 

Automatic Feature 
Selection 

[47] USA, 
Canada 

X ✓ 8 3 years ✓ X X Accuracy 
93% 

North 
America 

MRI, Genetic, 
Neuropsychological 
Assesement 

6 months Binary Logistic 
Regression 

Sensitivity 
86% 

MRI-Hippocampal 
Volume, Texture Value of 
Voxels, MMSE, APOE-4 

Specificity 
83% 

MRI-Automatic Feature 
Selection 
Others-No Feature 
Selection 

[63] Portuogal X ✓ 5 5 years ✓ X X Accuracy 
76% 

Europe Word Recall Test, 
Cancellation Task 

1 year Naive Bayes Sensitivity 
56% 

Verbal Paired Associate 
Learning, Cube Draw 

Specificity 
70% 

Digit Span, Raven 
Progressive Metrics 
No Feature Selection 

[48] USA, 
Canada 

✓ X 6 3 years ✓ X X Accuracy 
65% 

North 
America 

MRI Sensitivity 
70% 

Cortical Thickness, 
Surface Area, 
Volume 

6 months Specificity 
58% 

Sulcal Depth, Gyrus 
Height 
Multifeature 
network, in out 
network 
Multifeature 
network, in out 
network (Automatic 
Feature Selection 

[65] USA, 
Canada, 
Italy 

✓ X 6 3 years X ✓ X Accuracy 
74% 

North 
America, 
Europe 

MRI-Gray Matter, 
White Matter 
Intensity 

6 months Sensitivity 
75% 

Automatic Feature 
Extraction 

CNN Specificity 
75% 

[49] USA, 
Canada 

X ✓ 6 6 months ✓ X X Accuracy 
74% 

North 
America 

MRI - Freesurfer 6 months SVM Sensitivity 
81% 

CSF- A Beta 42, Peptide, 
Tau 

Specificity 
71% 

Genetic-APOE4 

(continued on next page) 
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Table 3 (continued ) 

Reference Country Single Modality 
Description 

Multiple Modality 
Description 

Number and 
Duration of 
Follow up 
Data 

MCI 
Range 

Machine 
Learning 

Deep 
Learning 

Ensemble 
Learning 

Result 

Neuropsychological- 
MMSE 
No Feature Selection 

[50] USA, 
Canada 

X ✓ 6 3 years ✓ X ✓ Accuracy 
78% 

North 
America 

Socio-Demographic 
Characteristics - Age, Sex, 
Education 

6 months  SVM, KNN, 
MLP 

Sensitivity 
77% 

Neuropsychological tests - 
MMSE, ADAS-Cog, RAVLT 

Specificity 
78% 

No Feature Selection 
[62] USA, 

Canada 
MRI Not Clear ✓ ✓ ✓ X  Accuracy - 

67% 
Gray Matter 
Intensity 

SVM Sensitivity - 
68% 
Specificity - 
66% 

[61] USA, 
Canada 

X 6 months Unclear ✓ X ✓ X Accuracy - 
74% 

Australia CNN Sensitivity - 
73% 

Australia Specificity - 
67% 

[60] USA, 
Canada 

✓ Not Clear ✓ X ✓ X X Accuracy - 
80% 

North 
America 

MRI patches SVM Precision - 
85% 
Sensitivity - 
82% 
Specificity - 
80% 

[59] USA, 
Canada, 
North 
America 

✓ ✓ 2 years Unclear ✓ X X Accuracy - 
99% 

Whole MRI brain 
image 

2 CNN Sensitivity - 
98% 

2 attention 
mechanism 

Specificity - 
100% 

[38] USA, 
Canada, 
North 
America 

✓ X Unclear Unclear ✓ ✓ X Accuracy 
92% 

MRI patches SVM SAE Sensitivity 
93% 
Specificity 
92% 

[52] USA, 
Canada, 
North 
America 

✓ X Unclear Unclear ✓ X X Accuracy 
89% 

MRI Hippocampal SVM Sensitivity 
90% 

MRI Ventricles Specificity 
88% 

[53] USA, 
Canada, 
North 
America 

X ✓ Unclear Unclear ✓ ✓ X Accuracy 
77% 

MRI 93 ROI BLR CNN Sensitivity 
79% 
Specificity 
76% 

[54] England, 
Europe 

✓ X Unclear Unclear X ✓ X Accuracy 
76% 

Whole patches of 
MRI 

CNN Sensitivity 
79% 
Specificity 
76% 

[55] Italy, 
Europe 

✓ X Unclear Unclear X ✓ X Accuracy 
91% 

Time Frequency CNN Sensitivity 
91% 

EEG data Specificity 
92% 

[56] USA, 
Canada, 
North 
America 

✓ X Unclear Unclear X ✓ X Accuracy 
88% 

Whole patches MRI CNN Sensitivity 
88% 

Cognitive data Attention 
mechanism 

Specificity 
88% 

(continued on next page) 
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researchers can focus their attention.  

● It will be interesting to see more experiments on a mix of population 
from various countries and regions around the world. Consequently, 
this requires a much larger collaboration among the hospitals and 
doctors around the globe.2 There is a large scope for research 
addressing the creation of a model for a generalized population. As 
there are few studies that addressed the populations apart from USA 
and Canada, more number of experiments should focus on AD pa-
tients in other parts of the world.  

● It will be also interesting to analyze the parameters responsible for 
AD. How does it vary from region to region and from country to 
country. A research at this level whereby finding the significant pa-
rameters responsible for MCI to AD conversions can give more 
insights.  

● Important challenge in the early prediction of MCI to AD conversion 
is the identification of the parameters that can report good results in 
the machine learning process. This would pinpoint towards the ne-
cessity for a good feature selection technique. This can be made more 
specific by creating an algorithm that can find the best set of features 
and by assigning weight to the features.  

● Prediction of MCI to AD conversions within a specific small amount 
of time is also a challenging task. For example, finding the patients 
who will convert to AD within the next 3 months or 6 months. 
Consequently, better studies should be conducted to achieve this. 

4. Limitation of the study 

The limitations of the existing study is as follows:  

● The study is conducted on a selected set of literature from 2017 
onwards. Our subsequent work will be to focus on comprehensive 
literature on Alzheimer’s detection from 2012 onwards. This is 
important for the research community because it will help a new 
researcher to know the evolution of models and feature extraction 
from the past.  

● The study is focused on finding out the ML papers that identify pMCI, 
sMCI patients which is the most challenging task. However, we 
would like to extend our study to identifying AD, MCI, and HC 
patients.  

● A detailed explanation of feature extraction methods is not given in 
this paper. We are planning an in-depth study on the various feature 
extraction techniques for classifying pMCI and sMCI.  

● We are also planning to focus on a detailed explanation of the various 
deep learning architectures used for detecting pMCI and sMCI pa-
tients. Many studies for pMCI and sMCI patients are performed on 
medical images using deep neural networks for feature extraction. 

5. Conclusion 

The parameters responsible for distinguishing MCI to AD converters 
is not specific and is unknown. This emphasizes the need for good 
feature selection algorithms that can trace out the best set of parameters 
out of a big dataset. Moreover, this review also found out a drawback of 
lack of experiments on various hospital setting data of various countries. 
A large scale co-operation of AD data will help researchers in exper-
imenting with variables of diverse population and designing a model 
appropriately, say a single model for generalized population within a 
country, continent. Etc. In short, the current research requires more 
generalized models. It is also observed that multiple modalities of data is 
reporting better results also. This focus on selection of distinguishing 
features from multi-modalities of data and designing a model 

Table 3 (continued ) 

Reference Country Single Modality 
Description 

Multiple Modality 
Description 

Number and 
Duration of 
Follow up 
Data 

MCI 
Range 

Machine 
Learning 

Deep 
Learning 

Ensemble 
Learning 

Result 

[66] USA, 
Canada, 
North 
America 

✓ X Unclear Unclear ✓ ✓ X Accuracy 
74% 

Whole patches MRI SVM CNN Sensitivity 
73% 

Cognitive data Specificity 
72% 

[58] USA, 
Canada, 
North 
America 

X ✓ Unclear Unclear ✓ X X Accuracy 
72% 

Multimodal brain Sensitivity 
72% 

Cognitive data Specificity 
72% 

[65] USA, 
Canada, 
North 
America 

✓ X Unclear Unclear X ✓ ✓ Accuracy 
81% 

MRI Patches CNN + RNN Sensitivity 
82% 
Specificity 
81% 

[44] USA, 
Canada, 
North 
America 

✓ X Unclear Unclear X ✓ ✓ Accuracy 
73% 

MRI brain regions CNN + RNN Sensitivity 
71% 

Hippocampus, 
Ventricles, 
Amygdala 

Specificity 
75% 

[49] USA, 
Canada, 
North 
America 

✓ X Unclear Unclear X ✓ ✓ Accuracy 
73% 

MRI brain regions CNN + RNN Sensitivity 
82% 

Graph connectivity Specificity 
84% 

93 ROI Specificity 
82%  

2 http://www.gaain.org/. 
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accordingly. Moreover, finding quick MCI to AD converters (say within 6 
months) using less number of follow up data is also a challenging task. 
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Stéphane Lehéricy, Marie-Odile Habert, Marie Chupin, Habib Benali, 
Olivier Colliot, Alzheimer’s Disease Neuroimaging Initiative, et al., Automatic 
classification of patients with alzheimer’s disease from structural mri: a 
comparison of ten methods using the adni database, Neuroimage 56 (2) (2011) 
766–781. 

[52] Paolo Maria Rossini, Francesca Miraglia, Fabrizio Vecchio, Early Dementia 
Diagnosis, Mci-To-Dementia Risk Prediction, and the Role of Machine Learning 
Methods for Feature Extraction from Integrated Biomarkers, in Particular for Eeg 
Signal Analysis, Alzheimer’s & Dementia, 2022. 

[53] Patricio Andres Donnelly-Kehoe, Guido Orlando Pascariello, Juan Carlos Gómez, et 
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