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Abstract With the popularity of various socialmedia,
the propagation of rumors is becoming a social threat.
Here, the proposed mathematical model signifies the
dynamics of rumor propagation on social media with
the influence of counter-rumor spreaders in regulating
the transmission process aswell as controlling its harm-
ful effect. The total number of users is divided into four
categories: (i) newcomer, (ii) spreaders, (iii) counter-
rumor spreaders, iv) stiflers. The spreading threshold
(R0) of rumor transmission regulates the condition of
the prevalence of rumor. (R0) < 1 assures the sta-
bility of rumor-free state, while (R0) > 1 assures
that one prevailing state exists uniquely with stable
nature. Condition for global stability of prevailing
state for deterministic system is derived. Subsequently,
the corresponding stochastic model demonstrates the
effect of random external factors (Wiener process) on
rumor propagation dynamics. The global existence and
uniqueness of the solution are established to study the
asymptotic behavior of that solution around the steady-
states. We have also compared the persistence criterion
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of rumor propagation for the modified system with the
deterministic system and derived the condition for the
extinction of rumor. Furthermore, scatter plots indicate
the significant impact of parameters and numerical sim-
ulations are presented to validate the analytical stud-
ies. Numerical results assure that environmental noise
plays a significant role in suppressing rumor propaga-
tion.
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Sensitivity analysis

1 Introduction

Rumors are basically improvised or fabricated news
that are the results of discussions of people with hive
mentality [1]. Advent of social networking sites (SNS)
makes the propagation of rumor remarkably fast to
a large number of SNS users [2]. Rumors that con-
tain negative, aggressive story and trigger insecurity or
fear of uncertainty, are circulated faster [3]. Sometimes
rumor shapes community sentiment, mass opinion [4],
induces panic [5,6], affects economy [7].

To curb these harsh impact of rumor, it is necessary
to get insight of the dynamical nature of a proper math-
ematical model on rumor dissemination. Like trans-
mission of infectious disease, production and circu-
lation of rumor has become a social contagion pro-
cess among SNS users. Research of rumor propaga-
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tion has been started in the year 1964 when Daley
and Kendall [8] first proposed their model on rumor
spread considering the dissimilarity of rumor spread
and virus transmission. In DK model the total num-
ber of users in SNS are divided into three groups,
ignorant class, spreader class and stifler class. Then
Thomson and Maki [9] made MT model by inducing
more complex interaction between ignorant class and
spreader class. In 2004, Moreno used complex net-
work to investigate rumor spread dynamics [10,11].
Zanette [12,13] also studied rumor spread model using
smallworld network.Kawachi [14] proposed age struc-
tured deterministic model on rumor propagation. A
lot of researchers studied delay deterministic rumor
spread model [15,16]. To control the negative impacts
of it, some researchers [17–19] discussed optimiza-
tion technique using media or punishment strategy.
[20] studied rumor spread dynamics on both homoge-
neous and heterogeneous network. In 2018 Affasinou
[21] proposed another SEIR (Susceptible-Educated-
Infected-Recovered) model on rumor spread dynam-
ics to explain the impact of people’s education on the
rumor spreadingdesire of socialmedia users. In [22,23]
rumor inhibitors or debunkerswere introduced to refute
the rumors. Subsequently, impacts of various kinds of
mechanisms like forgetting mechanism [24], hesitat-
ing mechanism [25], remembering mechanism [26] on
the dynamics of rumor propagation have been investi-
gated. Nowadays to study the rumor spreadmechanism
in more detail [27] introduced crowd classification for
SNS users. Choi et al. [28] discussed the impact of
echo chambers, which signify groups of like-minded
people sharing common interests, on rumor propaga-
tion. Recently, a large number of researchers studied
the random effect of external noise of white noise type
on rumor propagation [23,29,30].

Sometimes rumors can affect psychological well-
being and even trigger suicidal thoughts [31]. In reality,
a handful of SNS users propagate the rumors further
on social media. Very little proportion of the partici-
pants is encouraged or misled by those rumors [32,33].
The spreaders usually spread online rumors that sup-
port their beliefs or previous familiar information [34].
Therefore, users who are most likely to spread rumors,
can be addressed by counter-messaging to lower their
tendency or desire to circulate any online materials.
To implement this strategy of debunking rumors, we
propose a new mathematical model consisting of four
groups of SNS users: (1) Newcomer, who are new to

socialmedia and still uninformed of rumors, (2) spread-
ers, who spread rumors, (3) counter-rumor-spreader,
who shares authentic information, scientific or logical
explanation to expose the falseness of it after receiv-
ing any rumor, (4) stifler, who simply ignores it after
knowing the rumor. We study the qualitative behav-
ior of our model to investigate the effect of counter-
rumor-spreaders in reducing the number of spreaders.
Also, we derive the condition for prevalence of rumor
(spreading threshold R0) and prove that the condition
for pervasiveness of rumor depends on the incidence
ratio of becoming a counter-rumor spreader (p). The
inclusion of counter-rumor spreaders have made the
rumor model more realistic, and it has major signifi-
cance in regulating the spreading process, as discussed
in the numerical section. Then LHS-PRCC sensitiv-
ity analysis is performed to know the impact of each
parameter and to find out the most sensitive one. More-
over, external environmental disturbances like sudden
rise of any pandemic, any event of religious or political
importance, media intervention, etc. have significant
impact on propagation of rumor [35–38]. The quali-
tative behavior of the system considering the random
factors significantly deviates from the corresponding
deterministic system [39–41]

Recently, a lot of researchwork have been published
on partial differential equations [42–47]. To study the
influence of random environmental factors, stochastic
disturbances of white noise type are incorporated in
our model [48,49]. The conditions for persistence and
extinction of rumor spreaders in the modified model
are derived. Also, the results of the modified model are
compared with the former one analytically and numer-
ically for better understanding.

The rest of the paper is arranged as follows: A deter-
ministic model is formulated in the Sect. 2. The defini-
tions of parameters are also given. In Sect. 3, positive
invariance, the condition for pervasiveness of rumor,
and stability analysis for both steady states are inves-
tigated. The global stability of the prevailing state has
also been proven. In Sect. 4, a corresponding stochas-
tic model has been set up. Existence, uniqueness of
solution, persistence and extinction of rumor are also
studied in the same section. In Sect. 5, some significant
numerical results are presented to enhance our theoreti-
cal findings. TheLHS-PRCCsensitivity analysis is also
discussed in this section. Some concluding remarks are
analyzed in Sect. 6.
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2 Deterministic rumor propagation model

With the advent of social media, twisted news targeting
public opinion has started to disseminate significantly
faster and on a wider scale. Sometimes it really induces
panic or influences mass perception [4,6] that demands
to study the dynamics of rumor spread. In this article,
a rumor spread model is formulated with four groups
of netizens, namely, ignorant, spreader, counter-rumor-
spreader, stifler. Also, in COVID-19 period a lot of
rumors like “the probability of new coronavirus infec-
tion among smokers is much lower than that of non-
smokers” [22] have appeared [50] and people get puz-
zled and spread them out of panic. Then official media,
responsible websites, logical minded people started to
refute them and the behavior of people changed accord-
ingly. On the basis of these behavior of the netizens, we
have proposed a deterministic rumor spreading model,
consisting of the N (t) number of netizens at time
t . The total population is subdivided into four cate-
gories: Ignorant individuals or newcomer I (t), spread-
ers S(t), counter-rumor spreaders or inhibitors C(t),
stiflers R(t). When newcomers get informed about the
rumor, they can react in three ways: they can spread it
further, or may choose to counter or control rumor con-
sidering thebad impact of it, ormay simply ignore it due
to lack of interest and lack of authenticity of its source.
Accordingly, they join spreader class S(t), counter
spreader class C(t), or stifler class R(t). Spreaders
transmit rumor among newcomers at a rate k1. Then
the newcomers believe and join them with proportion
θ1, some oppose with their logical explanation, authen-
tic information and join in C(t) with proportion θ2 and
others join in R(t). Some of spreaders are blocked or
reported at a rate δ as a punishment of spreading any
harmful rumor. Counter-rumor spreaders interact with
newcomers at a rate k2. After hearing the logical or sci-
entific explanation, authentic information, newcomers
either join them with proportion φ or join with sti-
flers with proportion (1 − φ). We have assumed that
there is a constant flow B to the ignorant/newcomer
category. All accounts of netizens get logged off at a
rate μ. Note that if there is no spreader, the number of
counter spreaders should be zero. Because, in absence
of rumor, there is no need to counter the rumor. More-
overwith the increasing value of spreaders, influence of
counter-rumor spreaders on newcomers also increases.
Hence, we define the parameter k2 as a proportion
function p(1 − e−S). The inhibitor or counter-rumor

spreader group C(t) includes all the resources of orga-
nizations that control the spread of rumor. The function
p(1−e−S) is non-decreasing, which ensures that these
attempts to control the circulation of rumor never flop.
Also, this function is asymptotic to curve y = p i.e.,
as S → ∞ the curve of p(1 − e−S) approaches to the
value p, which signifies that these kind of resources in
group C(t) are limited in real world and the process
also becomes saturated gradually. Now we can formu-
late the model as follows:

d I

dt
= B − k1SI − k2C I − μI

dS

dt
= θ1k1SI − δS − μS

dC

dt
= θ2k1SI + φk2C I − μC

dR

dt
= (1 − φ)k2C I + (1 − θ1 − θ2)k1SI − μR.

(2.1)

All the parameters B, k1, k2, θ1, θ2, φ, μ are consid-
ered as positive constants, and their definitions are
given in Table 1.

3 Qualitative analysis of deterministic system

3.1 Non-negativity of the system

Integrating the first equation of the system (2.1)

d I

dt
≥ −I (k1S + k2C + μ) (3.1)

d I

I
≥ −(k1S + k2C + μ)dt (3.2)

I ≥ e−(k1S+k2C+μ)t (3.3)

Similarly from the second equation we have

dS

dt
≥ −S(δ + μ) (3.4)

dS

S
≥ −(δ + μ)dt (3.5)

S ≥ e−(δ+μ)t (3.6)

From third we obtain

C ≥ e−μt (3.7)
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Table 1 Parameter
description

Parameter Parameter definition

B Immigration number in newcomer class

k1 Spreading rate of rumors

θ1 The proportion that the people in newcomer class switch to spreader class after coming
into contact with spreaders

θ2 The proportion that the newcomers join with counter spreaders when they get to know
about rumor

k2 Contact rate of counter spreaders with newcomers

p Ratio of becoming counter spreader

δ The rate of blocking spreader accounts by social networking sites’ admin

φ The proportion that the people in newcomer class switch to counter spreader class after
coming into contact with them

μ Logging out rate of any account

And from fourth

R ≥ e−μt (3.8)

Hence, it is proved according to [51] that the solution
set of the system (2.1) is always non-negative as all the
parameters described in the model are positive.

3.2 Boundedness of the system

Let N (t) = I (t) + S(t) + C(t) + R(t) be the total
number users on SNS. As we have already proved that
all the solutions are non-negative, we have N (t) ≥ 0.
Now adding all the equations in system (2.1) we get,

dN

dt
= B − δS − μN

≤ B − μN .

Now integrating we get

N (t) ≤
(
N (0) − B

μ

)
e−μt + B

μ
. (3.9)

Therefore, taking limit as t → ∞, we obtain

N (t) ≤ B

μ

So, the system is bounded as 0 ≤ I (t) ≤ N (t), 0 ≤
S(t) ≤ N (t), 0 ≤ C(t) ≤ N (t), 0 ≤ R(t) ≤ N (t).

3.3 Spreading threshold of rumor

The steady-states of the system (2.1) are given by

1. Rumor-free-state (RFS),Ē = ( Ī , 0, 0, 0): i.e.,
spreader population vanishes eventually, where
Ī = B

μ
.

2. Rumor-prevailing-state (RPS), Ê = ( Î , Ŝ, Ĉ, R̂):
where spreader population prevails i.e., rumor per-
sists with S(t) �= 0.

The rumor free state of system (2.1) is given by

Ē =
(
B
μ
, 0, 0, 0

)
. In this article, R0, the spread-

ing threshold of rumor is the average number of new
spreaders caused by a single spreader in ignorant pop-
ulation. R0 < 1 implies that on average less than 1
spreader is generated and rumor vanishes eventually
from social media. On the contrary, R0 > 1 implies
that more than one spreader are generated and rumor
may prevail the population. Like basic reproduction
number in epidemiology, here we derive the paramet-
ric expression of the spreading threshold of rumor,R0

by next generation matrix method [52]. Here ‘S′ is
only ‘infected-like’ compartment and rest are ‘non-
infected-like’ compartment. Now applying next gen-
eration method by rearranging system (2.1) as follows:

F = θ1k1SI, V = (δ + μ)S

and

F = DF |Ē = θ1k1 I, V = DV |Ē = (δ + μ).

The threshold value of influence is the largest eigen
value of FV−1 is

R0 = θ1k1
δ + μ

B

μ
. (3.10)

123



A comparative study of deterministic and stochastic dynamics

3.4 Stability of the Rumor-Free-Equilibrium

The characteristic equation of the system (2.1) for RFE
is given by

(x + μ)3
[
x + μ + δ − θ1k1

B

μ

]
= 0, (3.11)

x being the eigen value of the jacobian matrix of the
system corresponding to the RFE. All the eigen values
are obtained as −μ with multiplicity 3 and θ1k1

B
μ

−
(δ+μ).Therefore by Routh-Hurwitz criterion we have
found that the RFE is stable iffR0 < 1 using (3.10).

3.5 Existence of rumor prevailing state (RPS)

At the endemic equilibrium or the rumor prevailing
equilibrium Ê = ( Î , Ŝ, Ĉ, R̂), with Ŝ �= 0, the follow-
ing conditions hold.

B − k1 Ŝ Î − p(1 − e(−Ŝ))Ĉ Î − μ Î = 0

θ1k1 Ŝ Î − (δ + μ)Ŝ = 0

θ2k1 Ŝ Î + φp(1 − e(−Ŝ))Ĉ Î − μĈ = 0

(1 − φ)p(1 − e(−Ŝ))Ĉ Î + (1 − θ1 − θ2)k1 Ŝ Î − μR̂ = 0.

(3.12)

From the second equation of (3.12) we have Î = δ+μ
θ1k1

.
Similarly from last equations we have

Ĉ = θ2k1(δ + μ)Ŝ

θ1k1μ − φk2(δ + μ)

R̂ = 1

μ
(1 − φ)p(1 − e(−Ŝ))Ĉ Î + (1 − θ1 − θ2)k1 Ŝ Î .

Now substituting the above values in the first equation
of (3.12) we get the following equation in terms of S

R0 − k1
μ
Ŝ − θ1θ2k12 p(1 − e−Ŝ)Ŝ

μ
[
θ1k1μ − φp(1 − e−Ŝ)(δ + μ)

] = 1.

(3.13)

Now we define a continuous function f as follows:

f (S) : [0, ∞) → R, f (S)

=
[
R0 − k1

μ
S − θ1θ2k12 p(1 − e−S)S

μ[θ1k1μ − φp(1 − e−S)(δ + μ)] − 1

]
.

(3.14)

Hence, we get limS→0 f (S) = R0 − 1 and limS→∞−
f (S) = −∞. Then by intermediate value property of
continuous function Eq. (3.13) has a root if R0 > 1,
say Ŝ, may not be unique. Note that for R0 < 1, the
rumor prevailing equilibrium does not exist.
Moreover, f ′(S) < 0 for all S ∈ [0,∞) ensures that
the rumor-prevailing equilibrium is unique. Therefore,
R0 > 1 ensures that the rumor-prevailing stste exists
uniquely. Also, from the above discussion, we can say
the system (2.1) experiences transcritical bifurcation at
R0 = 1.

Therefore, we can conclude that the rumor-free state
always exists and is stable only when the spreading
threshold R0 = θ1k1B

μ(δ+μ)
is less than 1. i.e., if the trans-

mission rate of rumor or proportion of ignorant people
becoming spreaders after getting to know the rumor
is lower compared to the blocking rate of malicious
spreaders or the natural logging off rate of the netizens,
rumor will eventually wipe out from social media. On
the converse condition, the prevailing state appears, and
the RFE becomes unstable.

Next, we will discuss the local stability analysis of
the system (2.1) about the endemic equilibrium.
The Jacobian matrix at prevailing state is given as fol-
lows:

Ĵ =

⎛
⎜⎜⎜⎜⎝

−
[
k1 Ŝ − p(1 − e−Ŝ)Ĉ − μ

]
θ1k1 Ŝ θ2k1 Ŝ + φp(1 − e−Ŝ)Ĉ (1 − φ)p(1 − e−Ŝ)Ĉ + θk1 Ŝ

−(k1 + pe−Ŝ Ĉ) Î θ1k1 Î − (δ + μ) (θ2k1 + φpe−Ŝ Ĉ) Î (1 − φ)pe−Ŝ Ĉ Î + θk1 Î

−p(1 − e−Ŝ) Î 0 φp(1 − e−Ŝ) Î − μ (1 − φ)p(1 − e−Ŝ) Î
0 0 0 −μ

⎞
⎟⎟⎟⎟⎠

(3.15)

where θ = 1− θ1 − θ2. Then we obtain the charac-
teristic polynomial for endemic state as follows.

λ4 + X1λ
3 + X2λ2 + X3λ + X4 = 0 (3.16)

where

X1 = μ + c1 + c2 − c3

X2 = μc1 + (μ + c1)(c2 − c3) + c4 − c2c3 + c5c7

X3 = (μ + c1)(c4 − c2c3) + μc1(c2 − c3)

+c5c7(μ − c3) + c5c6

X4 = μc1(c4 − c2c3) − μc3c5c7 + μc6c5
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c1 = μ − φp(1 − e−Ŝ)I1, c2 = μ + k1 Ŝ + p(1 − e−Ŝ)Ĉ

c3 = θ1k1 Î − (δ + μ), c4 = θ1k1 Î Ŝ(k1 + pe−Ŝ Ĉ)

c5 = p(1 − e−Ŝ) Î , c7 = θ2k1 Ŝ + φp(1 − e−Ŝ)Ĉ

c6 = θ1k1 Î Ŝ(θ2k1 + φpe−Ŝ Ĉ).

By Routh-Hurwitz stability criterion, we get the fol-
lowing result.

Theorem 1 The prevailing state of system (2.1) will
be locally asymptotically stable if all the roots of Eq.
(3.16) are with negative real parts, that is, if Xi > 0
for i = 1, 2, 3, 4 and X1X2X3 > X3

2X1X4.

3.6 Global stability of endemic equilibrium

Nowwe investigate the global stability of the prevailing
state using Lyapunav stability theorem.

Theorem 2 The rumor prevailing state is globally
asymptotically stable for R0 > 1.

Proof First, we consider a positive definite function
L(t) as

L(t) = [(I − Î ) + (S − Ŝ) + (C − Ĉ) + (R − R̂)]2.
(3.17)

Next, differentiating L(t) with respect to t along the
solution trajectories, we obtain

˙L(t) = 2[(I − Î ) + (S − Ŝ) + (C − Ĉ) + (R − R̂)]
( İ + Ṡ + Ċ + Ṙ) (3.18)

= 2[N (t) − ( Î + Ŝ + Ĉ + R̂)](B − μN (t) − δS(t))
(3.19)

= − 2

μ
(B − μN (t) − δ Ŝ(t))(B − μN (t) − δS(t))

as at the endemic state

[
( Î + Ŝ + Ĉ + R̂) = B

μ
− δ Ŝ

]

(3.20)

≤ − 2

μ
(B − μN (t) − δMS)

2 if δ < μ < 1

and MS is a lower bound of spreader population S(t).
(3.21)

Therefore, by Lyapunav stability theorem we can con-
clude that the prevailing state is globally stable for
R0 > 1 and δ < μ < 1. The global stability of the
rumor prevailing state can be compared to the viral sce-
nario in social media, i.e., rumor has reached to large
number of netizens and spreader population persists

and prevails in the whole population as time goes on.
Therefore, if the rate of blocking spreader accounts is
low enough and the spreading threshold is less than 1,
rumor can go viral. 	


4 Stochastic model

Propagation of rumors is influenced by various random
factors like social or political importance of an event,
interference of media, natural calamity. The activity of
the netizens also fluctuates with the disturbances in sur-
rounding environment and some noises are created in
the behavior, decision makings of the netizens [53]. To
quantify the effect of environmental fluctuation on the
spread of rumors, we revise the system (2.1) by induc-
ing white noise in the growth terms of three population
as follows. As the growth of stifler population does not
affect the dynamics of other populations, here we drop
the equation of stifler class.

d I =
[
B − k1SI − p(1 − e(−S))C I − μI

]
dt

+σ1 I dW1(t)

dS = [θ1k1SI − (δ + μ)S]dt + σ2SdW2(t)

dC = [θ2k1SI + φk2C I − μC]dt + σ3CdW3(t),

(4.1)

where Wi , i = 1, 2, 3 are mutually independent one
dimensional Wiener process over the complete proba-
bility space (�,F ,Ft ,P) with filtration {Ft }t≥0 satis-
fying right continuity and increasing whileF0 contains
all P−null sets.Wi (0) = 0, σ 2

i indicates the intensity
of white noise.

4.1 Global existence and uniqueness

First, let us consider the following functions:

f (I, S,C) =
[
B − k1SI − p(1 − e(−S))C I − μI

]

g(I, S,C) = [θ1k1SI − (δ + μ)S]
h(I, S,C) = [θ2k1SI + φk2C I − μC]

Lemma 1 For any initial value (I, S,C) ∈ I ntR3+,
there exists unique positive solution (I, S,C) of system
4.1 for any time t ∈ [0, τe) a.s. where τe is the explosion
time.
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Theorem 3 For any initial value (S0, I0,C0) ∈ R
3+,

the system (4.1) has a unique solution ∀t ≥ 0. And it
will be positive in R

3+ with probability 1, a.s.

Proof The r.h.s of model (4.1) follows local Lipschitz
condition, the system has unique local positive solu-
tion in [0, τe) a.s. τe is the explosion time. To prove
the solution is global we need to prove τe = ∞ almost
surely. Choose a sufficiently large number N so that
(I, S,C) ∈ [ 1

N , N ]. Now we can define stopping time
τn for every n ≥ N τn = inf{t ∈ [0,∞) : I /∈ ( 1n , n) or
S /∈ ( 1n , n) or C /∈ ( 1n , n)}. Since τn is increasing with
n, we can define τ∞ = limn→∞τn . Then τ∞ ≤ τe.
Now we need to prove τ∞ = ∞. We shall complete
the proof by contradiction. Let there exist positive con-
stants T, ε such that P{τ∞ ≤ T } > ε∀n ≥ N .
Now construct a C

3 function V0 : R
3+ → R+ as

V0(I, S,C) = I+1−ln I+S+1−ln S+C+1−lnC .
Clearly the V0(I, S,C) is non-negative in its domain.
By Ito’s formula we get

dV0(I, S,C) = LV0dt + (I − 1)σ1dW1

+(S − 1)σ2dW2 + (C − 1)σ3dW3.

(4.2)

where

LV0(I, S,C) = [
(1 − 1

I
) f (I, S,C)

+(1 − 1

S
)g(I, S,C) + (1 − 1

C
)h(I, S,C)

+1

2

[
σ1

2 + σ2
2 + σ3

2]]
≤ B + 3μ + δ + k1MS + k2MC

+δ + (θ1 + θ2)k1MSMC

+σ1
2 + σ2

2 + σ3
2(= M, say).

Where MI , MS, MC , are the respective supremum of
I, S,C . Then

dV0(I, S,C) ≤ Gdt+(I − 1)σ1dW1+(S−1)σ2dW2

+ (C − 1)σ3dW3 (4.3)

Integrating (4.3) by Ito’s formula from 0 to tm =
min{τn, t} where t ≤ T we obtain

V0(I (tm), S(tm),C(tm)) ≤ V0(I0, S0,C0) +
∫ tm

0
Mds

(4.4)

E[V0(I (tm), S(tm),C(tm))]≤V0(I0, S0,C0)+ME(tm)

(4.5)

Define �n = {τn ≤ T } ∀n ≥ N , then P{�n ≥
c}. Consequently for each ω ∈ �n there exist
(I (τn, ω), S(τn, ω),C(τn, ω) which equals either n or
1
n . Then

V0(I (τn, ω), S(τn, ω),C(τn, ω))

> min{1 + n − ln n, 1 + 1

n
− ln n}.

As a result

∞ > (V0(I0, S0,C0) + Gτn)

≥ P(�n)V0(I (τn, ω), S(τn, ω),C(τn, ω))

≥ ε[min{1+n− ln n, 1+1

n
− ln n}]

→ ∞ as n → ∞,

which is a contradiction. So, τ∞ = ∞ and τe = ∞.
Therefore the solution is global. 	

Theorem 4 If R0 < 1, and the following conditions

μ > σ1
2, (μ+δ) > σ2

2

2 ,μ > σ3
2 are satisfied, then for

any initial value, the solution I (t), S(t),C(t) of system
(4.1) follows the following property.

limt→∞Sup
1

t
E

∫ t

0

[
(I − B

μ
)2 + S2 + C2

]
ds

≤ θ1
2σ1

2 B
μ

2

K
, (4.6)

where K=min{θ12(μ−σ1
2), (μ+δ)−σ2

2

2 , c2[μ−σ3
2]},

c1 = θ1B
δ
μ

(δ+μ)(1−R0)
, c2 = k2

θ2k1MS
[θ12 B

μ
− φ].

Proof To prove the theorem first we consider the fol-
lowing functional

V1(I, S,C) = 1

2

[
θ1(I − B

μ
) + S

]2
+ c1S + c2

2
C2.

(4.7)

Now by applying Ito’s formula we get

dV1(I, S,C) = LV1dt +
[
θ1

(
I − B

μ

)
+ S

]

[(1 − θ)σ1 I dW1

+σ3CdB3] + p1σ3CdB3

+p2σ2S
2dB2, (4.8)

where

LV1 =
[
θ1

(
I− B

μ

)]
[θ1 f (I, S,C)+g(I, S,C)]

+c1g(I, S,C)+c2Ch(I, S,C)

123



M. Ghosh et al.

+1

2

[
θ1

2σ1
2 I 2 + σ2

2S2 + c2σ3
2C2

]
. (4.9)

LV1 ≤−θ1
2(μ − σ1

2)

(
I− B

μ

)2

−
(

μ+δ−σ2
2

2

)
S2

−c2(μ−σ3
2)C2+θ1

2σ1
2 B

μ

2

+S

[
θ1B+ B

μ
(δ+μ)θ1+c1θ1k1MI−(δ+μ)c1

]

+IC[φk2 + c2θ2k1S − θ1
2k2MI ].

(4.10)

Next we define c1, c2 in the following way

c1 = − θ1Bδ

(δ + μ)(R0 − 1)
,

c2 = k2
θ2k1MS

[θ12 B
μ

− φ].

Therefore, c1 is positive whenever R0 < 1 and c2 is
always positive. Integrating 4.8 using 4.10 and taking
expectation we obtain

EV1(t) ≤ EV1(0) + θ1
2 B

μ

2

t

+E
∫ t

0
[−θ1

2(I − B

μ
)2(μ − σ1

2)

−(δ + μ − σ2
2

2
)S2 − c2(μ − σ3

2)C2]ds.
(4.11)

Therefore

limt→∞Sup
1

t
E

∫ t

0

[(
I − B

μ

)2

+ S2 + C2

]
ds

≤ θ1
2σ1

2 B
μ

2

k
(4.12)

where K = min{θ12[μ−σ1
2], [(μ+ δ)− 1

2σ2
2], c2[μ

− σ3
2]}. 	


Theorem 5 Let us consider R0 > 1. If the follow-
ing conditions θ1

2(μ − k2 ŜĈ) > θ1
2σ1

2 + θ2k1Ĉ,
δ + μ − θ2k2 ŜĈ − θ2k1Ĉ > σ2

2, μ − θ2 Î Ŝ >

σ3
2 hold, again for any initial condition, the solution

(I (t), S(t),C(t)) ∈ R
3+ satisfy the following prop-

erty.

limt→∞Sup
1

t
E

∫ t

0

[
(I − Î )2 + (S − Ŝ)2 + (C − Ĉ)2

]
ds

≤ M0

k0
, (4.13)

where M0 = 1
2k2θ1(1 + θ1) Î Ĉ + θ1

2k2 Î 3Ĉ +
θ1k2 Î Ŝ2Ĉ + θ1σ1

2 Î 2 + (+ 1
2c3)σ2

2 Ŝ2 +θ2k1 Î Ŝ(1 +
Ĉ2) + θ2k1Ĉ( Î 2 + Ŝ2) + σ3

2Ĉ2

k0 = min{θ12(μ − k2 ŜĈ) − θ1
2σ1

2 − θ2k1Ĉ, δ

+ μ − θ2k2 ŜĈ − θ2k1Ĉ − σ2
2, μ − θ2 Î Ŝ − σ3

2}

and

c3 = (δ + 2μ)

k1
.

Proof First consider the following functional

V2(I, S,C) = 1

2
[θ1(I − Î ) + (S − Ŝ)]2

+c3

(
S − Ŝ + Ŝ ln

(
S

Ŝ

))
+ (C − Ĉ)2

2
(4.14)

Now by applying Ito’s formula we get

dV2(I, S,C) = LV2dt + [θ1(I − Î )

+ (S − Ŝ)][θ1σ1 I dW1

+ σ2SdW2] + c3

(
1 − Ŝ

S

)
σ2SdW2

+ (C − Ĉ)σ3CdW3, (4.15)

where

LV2=[θ1(I− Î )+S−Ŝ][θ1 f (I, S,C)+g(I, S,C)]
+1

2
(θ1

2σ1
2 I 2+σ2

2S2)+c3θ1k1(I− Î )(S−Ŝ)

+ 1

2
σ2

2 Ŝ + (C − Ĉ)[θ2k1 I S + φk2 IC − μC]

+ 1

2
σ3

2Ĉ . (4.16)

LV2 ≤ −(I − Î )2[θ12(μ − k2 ŜĈ) − θ1
2σ1

2 − θ2k1Ĉ]
− (S − Ŝ)2[δ + μ − θ2k2 ŜĈ − θ2k1Ĉ − σ2

2]
− (C − Ĉ)2[μ − θ2 Î Ŝ − σ3

2](I − Î )(S − Ŝ)θ1

(δ + 2μc3k1)

1

2
k2θ1(1 + θ1) Î Ĉ + θ1

2k2 Î
3Ĉ + θ1k2 Î Ŝ

2Ĉ

+ θ1σ1
2 Î 2 + (+1

2
c3)σ2

2 Ŝ2

+ θ2k1 Î Ŝ(1 + Ĉ2) + θ2k1Ĉ( Î 2 + Ŝ2) + σ3
2Ĉ2

(4.17)
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Now choose c3 such that c3 = (δ+2μ)
k1

. Clearly c3 is
positive. Integrating 4.15 using 4.17 and taking expec-
tation we obtain

EV2(t) ≤ EV2(0) + M0t (4.18)

where M0 = 1
2k2θ1(1+ θ1) Î Ĉ + θ1

2k2 Î 3Ĉ + θ1k2 Î Ŝ2

Ĉ + θ1σ1
2 Î 2 + (+ 1

2c3)σ2
2 Ŝ2

+θ2k1 Î Ŝ(1+Ĉ2)+θ2k1Ĉ( Î 2+Ŝ2)+σ3
2Ĉ2.Therefore

limt→∞Sup
1

t
E

∫ t

0
[(I − Î )2 + (S − Ŝ)2

+ (C − Ĉ)2]ds ≤ M0

k0
(4.19)

and

k0 = min{θ12(μ − k2 ŜĈ) − θ1
2σ1

2 − θ2k1Ĉ, δ

+ μ − θ2k2 ŜĈ − θ2k1Ĉ − σ2
2, μ − θ2 Î Ŝ − σ3

2}

Hence the theorem. 	


4.2 Extinction and persistence of rumor

Lemma 2 : [54] If (I, S,C) be the solution of the sys-
tem (4.1) with the initial condition (I0, S0,C0) ∈ R

3+,
then we have

limt→∞
I + S + C

t
= 0 a.s. (4.20)

and limt→∞ sup ln I (t)
t ≤ 0, limt→∞ sup lnS(t)

t ≤
0, limt→∞ sup lnC(t)

t ≤ 0 a.s. Again, when μ >
1
2max{σ12, σ22, σ32}, we obtain following results:

limt→∞
∫ t
0 I (s)dW1(s)

t
= 0,

limt→∞
∫ t
0 S(s)dW2(s)

t
= 0,

limt→∞
∫ t
0 C(s)dW3(s)

t
= 0.

Theorem 6 If (I, S,C) is a solution of system (4.1)
with initial value (I0, S0,C0) ∈ R

3+. Furthermore,
when R0 < 1 + σ2

2

2 and μ > 1
2max{σ12, σ22, σ32},

the spreader population S(t) goes to extinction i.e.,

limt→∞ sup
1

t

∫ t

0
S(r)dr < 0. (4.21)

Proof First define the functional P(S) = ln(S(t)).
Then applying Ito’s formula to P(S) we obtain

d ln(S(t)) = [θ1k1 I (t) − (δ + μ)] dt

+σ2dW2 − σ2
2

2
dt (4.22)

≤ [θ1k1 B
μ

− (δ + μ + σ2
2

2
)]dt + σ2dW2.

(4.23)

Integrating both sides and dividing by t , we get
ln S(t) − ln S(0)

t
≤ [θ1k1 B

μ
− (δ + μ

+σ2
2

2
)] + σ2

t
W2(t) (4.24)

= (δ + μ)[R0 − 1 − σ2
2

2(δ + μ)
]

+σ2

t

∫ t

0
dW2(s)ds. (4.25)

Now taking limit superior as t → ∞ and using strong
law o large numbers for Martingale, we have

limt→∞
∫ t
0 σ2dW2(s)ds

t
= 0 a.s. (4.26)

Therefore

limt→∞ sup
ln S(t)

t
≤ (δ+μ)

[
R0−1− σ2

2

2(δ+μ)

]
a.s.

(4.27)

Finally we get

limt→∞ sup
ln S(t)

t
< 0 a.s. if

[
R0 < 1+ σ2

2

2(δ+μ)

]
.

(4.28)

The above result implies that limt→∞ S(t) = 0 a.s.
i.e. the spreader class goes to the extinction if θ1k1 B

μ
<(

δ + μ + σ2
2

2

)
. Also by the formulation of the model

we have limt→0 C(t) = 0 a.s..
Then for the positive constants c1, c2 there exist
T1, T2 > 0 such that S ≤ c1

k1
and C ≤ c2

p for all t >

max{T1, T2}. Subsequently we have,

d I =(B − k1 I S − k2 IC − μI )dt + σ1 I (t)dW1

(4.29)

≥B − (μ + c1 + c2)I dt + σ1 I dW1. (4.30)
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Again integrating both sides and dividing y t alongwith
the Lemma 2 we get

limt→∞ inf
1

t

∫ t

0
I (r)dr ≥ B

(μ + c1 + c2)
a.s.

(4.31)

c1, c2 being arbitrary, let us choose c1, c2 as c1 =
k1

B
μ
, c2 = p B

μ
.

limt→∞ inf
1

t

∫ t

0
I (r)dr ≥ B

μ + 2B
μ

a.s. (4.32)

4.3 Persistence

For the stochastic system of rumor propagation (4.1)
the spreader population S(t) is said to be persistent in
mean if limt→∞ inf 1

t

∫ t
0 S(r)dr > 0.

Lemma 3 Consider the function f (t) ∈ C([0,∞) ×
�, (0,∞)). Then for the positive values η0, η satisfying

ln f (t) ≥ ηt − η0

∫ t

0
f (r)dr + F(t) a.s.

for all t > 0 and F(t) ∈ C([0,∞) × �, (R)) and
limt→∞ F(t)

t = 0 a.s., we have

limt→∞ inf
1

t

∫ t

0
S(r)dr ≥ η

η0
a.s. (4.33)

Theorem 7 Considering μ > 1
2max{σ12, σ22, σ32},

for any solution (I, S,C) of system (4.1) with initial
values I (0) > 0, S(0) > 0,C(0) > 0 along with
R̂0 > 1, the rumor spreader population is said to per-
sists i.e.,

limt→∞ inf
1

t

∫ t

0
S(r)dr > 0. (4.34)

Proof Integrating Eq. (4.22) and dividing both sides by
t we obtain the following equation

ln S(t) − ln S(0)

t
= θ1k1

∫ t
0 I (r)dr

t
− (δ + μ + σ2

2

2
)

+ σ2
∫ t
0 dW2(t)

t
. (4.35)

Now using 4.32, we have

ln
ln S(t)

t
≥ θ1k1

B

μ + 2B
μ

+ ln S(0)

t
−

(
δ + μ + σ2

2

2

)

+ σ2W2(t) (4.36)

≥ θ1k1
B

μ + 2B
μ

−
(

δ + μ + σ2
2

2

)
−

∫ t
0 S(r)dr

t

+ σ2W2(t) as S(t) ≥ 0 . (4.37)

Applying lemma 3 we have the following result

∫ t
0 S(r)dr

t
≥ θ1k1

B

μ + 2B
μ

−
(

δ + μ + σ2
2

2

)
.

(4.38)

Therefore whenever θ1k1
B

μ++ 2B
μ

>
(
δ + μ + σ2

2

2

)
,

the rumor persists in social networks. 	


5 Numerical results and discussion

In this section, we present some numerical plots
to enhance and validate the model formulation and
dynamical analyses given in the above sections. All
the simulations are performed using Matlab R2018a.
For deterministic system we use ode45 Matlab solver
and for the corresponding stochastic model we use sde
(Fig. 1).

Fig. 1 Flow diagram showing rumor transmission process
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Table 2 Parameter set

Parameter set B k1 θ1 θ2 p φ μ δ

A1 3 0.15 0.56 0.12 0.65 0.2 0.5 0.32

A2 10 0.45 0.37 0.12 0.125 0.2 0.38 0.12

A3 6 0.65 0.6 0.12 0.35 0.2 0.15 0.12

5.1 Simulations for deterministic system

For simulation we have estimated parameter values as
given in the following Table 2.

According to our model (2.1), inhibitor interacts
only with newcomers with incidence ratio p. Figure2a
depicts that p helps to suppress the rumor spreaders and
in contrast k1 helps to increase. On the contrary Fig. 2b
demonstrates that k1 helps to increase the inhibitor pop-
ulation up to some extent and then starts to suppress
the growth of counter rumor spreaders, which validates
our model formulation. Clearly, the inhibitor popula-
tion grows large as p increases. Figure3 illustrates the
role counter rumor spreaders in curbing rumor spread-
ers and vice-versa. From Fig. 3a, it can be noted that
increase in inhibitor population can successfully sup-
press the spread of rumor.

As we already know that R0, the threshold value
of influence, as defined by (3.10) is an important para-
metric expression. It leads the system either to rumor
free scenario or to the pervasiveness of rumor. The blue
line indicates the stability of the system and the red line

for instability. Figure4 are the contour plots for R0,
demonstrate the bi-linear dependence ofR0 on param-
eters B, θ1 and k1. Note that all three parameters helps
R0 to rise. Next we do sensitivity analysis for R0 to
figure out the impacts of all the parameters onR0 (Fig.
1). Figure5 shows the stability switch with the increase
of R0.

Definition: Normalized forward sensitivity index of a
variable u, that depends on a variable v, is expressed
as πv = ∂u

∂v
× v

u .

The sensitivity index ofR0 with respect to θ1, B, k1, μ,

δ is given follows:

π
R0
θ1

= 1

π
R0
k1

= 1

π
R0
B = 1

π
R0
δ = −δμ2(δ + μ)

(μδ + μ2)2

πR0
μ = −

[
1 + μ

(δ + μ)

]
.

Figure6 depicts that R0 is highly sensitive to the
transmission rate of rumors (k1), number of new
accounts (B) and the proportion that individuals in
newcomer class switch to spreader class (θ1). And it
is inversely sensitive to rate of account blocking in
spreader population (δ), highly inversely sensitive to
logging off rate (μ).

Fig. 2 Contour plots presenting the impact of two contrasting parameters k1 and p on the growth of Spreaders and Counter-rumor
spreaders
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Fig. 3 Effect of inhibitors on rumor spreaders where rest of parameters are taken from A2

Fig. 4 Contour plots of R0 presenting the impact of changing parameters on the development of R0

The 3 − D phase portrait in Fig. 7 presents that tra-
jectories with various initial conditions and parameter
set as R0 > 1, converges to a single point, illustrating
the global stability of the rumor prevailing state, that is
analytically proved in theorem 2.

5.2 Sensitivity analysis

The input parameters in any complex deterministic
mathematical model are usually considered constant.
These values cannot be knownwith sufficient degree of
accuracy due to error in measurements of parameters,
inefficiency of present techniques tomeasure them, etc.

Therefore, sensitivity analysis is conducted to quan-
tify the impact of uncertainty on the system’s output
and to know the confidence level of the parameter esti-
mates. There exist a lot of uncertainty in the behavior
of the users of social networks [53], that influence the
spread of rumor. Here, we perform global sensitivity
usingLHS-PRCCscheme [55] to estimate the impact of
uncertainty of input parameters of rumor spread model
on system output. In case of uncertainty analysis, Latin
hypercube sampling (LHS) is the most efficient tech-
nique as it includes fewer sample than randomsampling
to give equivalent accuracy.
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Fig. 5 Transcritical bifurcation with respect toR0 with param-
eter set A2

Fig. 6 Bar-diagram tomeasure the sensitivity ofR0 with respect
to parameters and the values of parameters are taken from A2

Fig. 7 Trajectories from different initial points converge to a
single point with parameter set A2

Also, for each parameter samples are taken without
replacement under pdf (probability density function)
within certain interval. pdfs are divided into N equal
probability intervals, where N is the sample size and
N ≥ k + 1, k = number of parameters varied in sim-
ulation. Next N × k is generated that gives N num-
ber of solutions for each set of parameter variation.
PRCC measures nonlinear and monotonic dependence
between system’s input parameters x j and output vari-
able y.Neglecting the correlationbetween input param-
eters, the correlation coefficient (CC) r ∈ [−1, 1],
between is x j and y is derived by the following for-

mula as discussed in [55,56]. r = Cov(x j ,y)√
Var(x j )Var(y)

=
∑N

i=1(xi j−x̄)(yi−ȳ)√∑N
i=1(xi j−x̄)2(yi−ȳ)2

x̄ and ȳ are sample means corre-

sponding to x j and y respectively. Partial correlation is
measured between (x j − x̂) and (y − ŷ) after discard-
ing the linear effects of input parameters on y. After
rank transformed of j − th input and output variable
for k−sampled data, (x j − x̂ j ) and (y− ŷ) are derived
by following linear regression models:

x̂ j = c0 +
k∑

n=1,n �= j

cnxn and ŷ = d0 +
k∑

n=1,n �= j

dnxn .

Next we perform combined LHS-PRCC method as
described in [55] to analyze uncertainty of our model.
We start our analysis by defining a parameter set for
LHS matrix followed by constructing the pairs of sam-
ple from output variables. Then by rank transforming
the system parameter and output variable matrix, we
calculate PRCC of parameters.
Among all the parameters we have allotted 4 parame-
ters (B, k1, θ1, d1) to normal distribution and 4 param-
eters (μ, p, θ2, φ) to uniform distribution. The sample
size is taken N = 1000 for PRCC analysis. PRCCfinds
the effect system parameters on output variables and
also finds out the most influential parameter to achieve
specific target like efficiently control of any wide-
spread rumor. Here we present scatter plots to asses the
statistical impact of every parameter on spreader class
(Fig. 8) and counter spreader class (Fig. 9). The sign
of the PRCC values depicts that the qualitative depen-
dence of spreader and inhibitors populations to each
parameter. Positive sign denotes that the parameters
help populations to grow and negative sign inversely
influences the growth of the populations. Here the min-
imum allowed certainty or confidence level for the test
is considered at 95 on PRCC values (p ≤ 0.05). From
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Fig. 8 Scatter plots of parameters depicting the correlation of spreader population with sample size 1000 and significance level 0.05

Fig. 9 Scatter plots of parameters depicting the correlation of counter-rumor-spreaders with sample size 1000 and significance level
0.05

Fig. 8, k1, θ1 has positive influence on spreader popula-
tion, while μ has negative influences. On the contrary,
Fig. 9 depicts that k1, θ1 and μ help C(t) to grow.

5.3 Simulations for stochastic system

Next, we present plots for the corresponding stochastic
system (4.1). Here we use the previous parameter sets
along with the noise intensities σ1, σ2, σ3.

Fig. 10d shows that the solution trajectory of system
(4.1) evolves around the solution of the system (2.1).
With parameter set A2 alongwith noise intensity values
σ1 = 0.2, σ2 = 0.85, σ3 = 0.3, this figure establishes
the result of the theorem 4. Note that all the parame-
ter values and noise values satisfy the conditions of the
theorem 4. In this case, individuals in ignorant class are
the only survivors in the system as time goes on and
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Fig. 10 Time series of populations and 3d phase portrait show extinction of rumor for system (4.1) with parameter set A1 for which
R0 < 1 and σ1 = 0.2, σ2 = 0.85, σ3 = 0.3

spreader population goes to extinction faster in pres-
ence of noise (see Fig. 10b).

Here, we consider the parameter set A3 for which
R0 > 1 and noise intensities σ1 = 0.2, σ2 =
0.85, σ3 = 0.3 so that the conditions in theorem 5 get
satisfied. Then figures in Fig. 11 reflects the result of
theorem 5 numerically. i.e., the solution path of each
population for stochastic system (4.1) fluctuates around
the solution paths of respective population of prevail-
ing state for the deterministic system (2.1). Figure11e
ensures the same thing. Figure11d presents the relative
frequency density for spreader class.

To prove the persistence theory, discussed in theo-
rem7,we choose parameter set A2. Every plot inFig. 12
shows the persistence and pervasiveness of rumor

spreaders and also counter rumor spreaders. For the
parameter set A2, we have R0 > 1. Next we increase
the values of noise intensity from σ1 = 0.13, σ2 =
0.2, σ3 = 0.3 to σ1 = 1.6, σ2 = 1.652, σ3 = 1.652,
both the populations S(t) and C(t) decrease to zero
see Fig. 13. So, noise intensities also help to control
rumor if necessary. Note that noise values in Fig. 13
and parameters in A2 do not satisfy the conditions given
in theorem 7. And rumor is eventually wiped out with
R0 > 1.

6 Conclusion

In this paper, we have formulated the ISCR (Ignorant-
Spreader-Counter-Rumor Spreader-Stifler) model to
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Fig. 11 Pervasiveness of rumor with parameter set A3and σ1 = 0.2, σ2 = 0.85, σ3 = 0.3

investigate the rumor propagation mechanism with the
interference of inhibitors or counter-rumor spreaders.
To better fit the model in a practical scenario, we have

assumed that the number of counter-rumor spread-
ers grows with a nonlinear, non-decreasing function
of spreaders. Moreover, we have derived the explicit
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Fig. 12 Time series of populations show persistence of rumor for system (4.1) with parameter set A2 and σ1 = 0.13, σ2 = 0.2, σ3 = 0.3

expression of threshold value of influence R0 which
regulates the rumor propagation. In our analysis, we
have found that R0 = θ1k1B

μ(δ+μ)
is closely related to the

dynamical behavior of the system. WhenR0 < 1 (i.e.,
when the recruitment rate to the ignorant population or
the transmission rate of rumor is higher compared to
the blocking rate of malicious spreader accounts or the
logging off rate of any account), then the stable RFE
exists, i.e., rumors wipe out from social media eventu-
ally; while the converse condition is satisfied, then the
RPE exists, i.e., rumors can persist in the population.
We have proved analytically and numerically that the
rise in R0 triggers the switch of stability from rumor-
free state to prevailing state. We have employed nor-
malized forward sensitivity analysis to show the impact
of input parameters on R0. The analysis has indicated

that k1, θ1, B are the most sensitive parameters to R0.
In this connection, we have analyzed local stability of
the deterministic system around both the equilibria.
We have also found the conditions of global stability
of the prevailing state, that can be compared to any
widely spread rumor (i.e., rumor becomes viral). from
our study it is found that if the rate of blocking mali-
cious spreader accounts is low enough than the natural
logging off rate (δ < μ < 1) (sufficient condition for
global stability of RPS) and the spreading threshold is
greater than1, rumors cangoviral. This situation is very
common in social media and the situation can be con-
trolled by increasing the interference of counter-rumor
spreaders i.e., by raising the value of p (see Fig. 3a).
Also, Increasing the blocking rate (δ) can be a solu-
tion. Moreover, the parameter values cannot be con-
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Fig. 13 Disappearance of rumor spreaders and counter rumor spreaders with the same parameter set A2 when noise intensities are set
too high

sidered with sufficient degree of certainty in practical
scenario; hence we have measured global sensitivity of
spreader population and counter-rumor spreader pop-
ulation with respect to the uncertainty in input param-
eters and observed the contribution of parameters in
inhibiting the spreading process or accelerating it (see
Figs. 8 and 9). This study is really helpful to control
any viral case (widespread rumor) by regulating the
key parameters. As the behavior of netizens in social
networks and their decision making are very uncertain
[53]. The perception of people to any event is random
and has a correlation with the changes in external envi-
ronment [57]. To reflect this reality, we have introduced
wiener process in our proposed system to study the
randomness of rumor transmission process. Unique-
ness and existence of a global positive solution of the
stochastic system is verified. The trajectories of the ran-
dom system deviate from the trajectories of determin-
istic one but we have established the parametric condi-
tion for which solution trajectories of stochastic system
fluctuate around the respective solution trajectories of
corresponding deterministic system.

We have also derived the parametric restrictions
for persistence and extinction of rumor. It is observed
that the noise intensities and the spreader density are
inversely correlated in case of information dissemi-
nation in homogeneous social sites. The higher the
noise intensities values the lesser the time is taken for

disappearance of rumor from online social networks.
Also, we have verified numerically that rise in noise
intensity makes the disappearance of rumor faster with
R0 < 1(see Fig. 10b). Simply increase in noise values
can even lead to extinction of rumor spreaders, keep-
ing rest of the system parameters same for which rumor
prevails in deterministic case(see Fig. 13). So, it can be
regarded that environmental noise plays a significant
role in suppressing rumors. As discussed earlier, the
inhibitors include official media, various responsible
web-pages,websites that release authentic information,
scientific knowledge to respond public concern regard-
ing any harmful widespread rumor and are capable to
suppress rumor up to a certain extent. In this article, we
have studied the harmful effect of rumor spread and dis-
cussed the mechanism of suppressing rumor, it is really
hard to describe the exact process of rumor propagation
with a homogeneous model with four groups of neti-
zen. In article [22] the total population is subdivided
into 5 subgroups including rumor debunkers D(t) and
an optimal control strategy is applied to curb rumor.
In our article, we have shown that the interference of
a counter-rumor spreader or inhibitor C(t) can effec-
tively suppress rumor. Moreover, we have introduced
the blocking rate of the malicious spreader (δ), which
is relatively new and has had a significant impact on
suppressing rumors (see sensitivity analysis). In arti-
cle [23], the sensitivity of R0 with respect to param-
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eters is shown using Sobol sensitivity analysis. In our
article, we have derived the normal forward sensitiv-
ity index for R0 and we have also investigated the
sensitivity of spreader population S(t) and inhibitor
population C(t) with respect to parameters using the
LHS-PRCC test. Zhang and Zhu [30] induced stochas-
tic perturbations in IHSR(Ignorant-Hesitant-Spreader-
Stifler) model and derived the conditions for persis-
tence and extinction of spreader class. According to
their findings, noise has a negative impact on rumor
propagation and can lead to its extinction. Similar
results have also been obtained in our analysis; but
here rumors are curbed or suppressed by the joint effort
of counter-rumor spreaders and noise intensity. The
existing theoretical findings are based on single lay-
ered homogeneous model. The spreading desire of any
rumor is also influencedbydifferent social background,
education, exposure. In that case netizens get divided
in different groups and rumors are spread at different
rates in different groups, also application of control hits
different groups differently. A multi-layered model is
effective to study this dynamics in detail. This is left as
a possible way of our further work.
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